

Outline of the Series

- 1. The World of Algebraic Curves
- 2. Conic Sections and Rational Points
- 3. Projective Geometry and Bezout's Theorem
- 4. Solving a Cubic Equation
- 5. Exploring Cubic Curves
- 6. Rational Points on Elliptic Curves

Fundamental Theorem of Algebra

• Every polynomial P(x) with complex coefficients and degree $n \ge 1$ has at least one complex zero.

Corollary:

Every polynomial P(x) with complex coefficients and degree n≥1 can be factored into n linear factors. P(x) = a(x-c₁)(x-c₂) ··· (x-c_n)

- $I(x) = u(x c_1)(x c_2)$
- Equivalently:
 - P(x) = 0 has *n* solutions, counting multiplicities.
 - y = P(x) has at most n x-intercepts.

Properties

Suppose f(x, y, z) is a homogeneous polynomial of degree $n \ge 1$. Then ...

- The origin is a point on the graph of f(x, y, z) = 0.
 For any a∈R, f(ax,ay,az) = aⁿf(x, y, z).
- Proof: Factor a^n from each term of f(ax, ay, az).
- If (x_0, y_0, z_0) is a point on the graph of f(x, y, z) = 0, then so is every point on the line joining (x_0, y_0, z_0) with the origin.
- The graph of f(x, y, z) = 0 is a double cone (but rarely circular) with its vertex at the origin.
- The shape of the cone can be easily seen where it intersects the unit sphere.

