Some Highlights along a Path to Elliptic Curves

Part 3: Projective Geometry and Bezout's Theorem Steven J. Wilson, Fall 2016

Outline of the Series

1. The World of Algebraic Curves
2. Conic Sections and Rational Points
3. Projective Geometry and Bezout's Theorem
4. Solving a Cubic Equation
5. Exploring Cubic Curves
6. Rational Points on Elliptic Curves

Extending the Fundamental Theorem

- If $P(x)$ is a polynomial of degree $n \geq 2$, and $L(x)$ is a linear function, then the graphs of $y=P(x)$ and $y=L(x)$ intersect in at most n points. \qquad Proof:
- Let $f(x)=P(x)-L(x)$
- Then $f(x)$ is also a polynomial of degree n.
- By the corollary of the Fundamental Theorem of Algebra, $f(x)$ has at most n x-intercepts.
- Therefore $P(x)=L(x)$ has at most n solutions.

Extending to Algebraic Curves

Fundamental Theorem Extended Bezout's Theorem

- If $P(x)$ is a polynomial of degree $n \geq 2$
- If $P(x, y)$ is a polynomial of degree $n \geq 1$,
- and $L(x)$ is a linear function,
- then the graphs of $y=P(x)$ and $y=L(x)$
- intersect in exactly n points,
- counting multiplicities,
- and $Q(x, y)$ is a polynomial of degree $m \geq 1$
- with no common factors,
- then the graphs of $P(x, y)=0$ and $Q(x, y)=0$
- intersect in exactly $m n$ points,
- counting multiplicities,
- in the complex plane.
- extended to include points at infinity.

Example: Parabola and Line
\qquad

Example: Two Cubic Curves \qquad

3 real
1 at infinity with mult. 6
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Simple Curves on the Disk

Conics on the Unit Disk \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Converting Points

From homogeneous to R^{2}

- $(5,-7,9)$ becomes: $\left(\frac{5}{9},-\frac{7}{9}\right)$

From R^{2} to homogeneous

- $(5,8)$ becomes: $(5,8,1)$ or $(10,16,2)$ or
- $(3,4,1)$ becomes: $(3,4)$
- $(-2,5,0)$ becomes: The point at infinity 5 on the line $\quad y=-\frac{-}{2}$
- $(3,0,0)$ becomes: The point at infinity on the x-axis.
- Point at infinity on line $y=-2 x$ is: $(1,-2,0)$ or $(2,-4,0)$ or
- Point at infinity on x-axis is: $(1,0,0)$ or $(2,0,0)$ or
- Point at infinity on y-axis is: $(0,1,0)$ or $(0,2,0)$ or
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Homogeneous Polynomials

- A polynomial is homogeneous if all of its terms have the same degree.
$3 x+5 y$
$2 x^{2}+3 y+6$
$4 x^{4} y^{2}-3 x y^{5}$
\qquad
\qquad
- We can homogenize a polynomial by introducing one more variable with an appropriate exponent.

2	
$2 x^{2}+3 y+6$	
$17-2 x y$	$17 z^{2}-2 x y$
$8 x^{2}+5 x y+6 y^{3}$	$8 x^{2} z+5 x y z+6 z^{3}$

Properties

Suppose $f(x, y, z)$ is a homogeneous polynomial of degree $n \geq 1$. Then.

- The origin is a point on the graph of $f(x, y, z)=0$.
- For any $a \in R, f(a x, a y, a z)=a^{n} f(x, y, z)$.
- Proof: Factor a^{n} from each term of $f(a x, a y, a z)$.
- If $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the graph of $f(x, y, z)=0$ then so is every point on the line joining $\left(x_{0}, y_{0}, z_{0}\right)$ with the origin.
- The graph of $f(x, y, z)=0$ is a double cone (but rarely circular) with its vertex at the origin.
- The shape of the cone can be easily seen where it intersects the unit sphere.

An Elliptic Curve Example

- Consider: $x^{3}-y^{2}-4 x=0$, same as: $y= \pm \sqrt{x^{3}-4 x}$
- Homogenizes as: $x^{3}-y^{2} z-4 x z^{2}=0$
\qquad
$x^{3}-y^{2}-4 x=0 \quad x^{3}-z-4 x z^{2}=0 \quad 1-y^{2} z-4 z^{2}=0$

- The point at infinity is an ordinary point.

Intuiting Infinity: Non-Asymptotic \qquad
\qquad
\qquad
\qquad
\qquad
In each case, the line at infinity is tangent to the curv at the point at infinity (assuming that the limit of the slope exists).

- Or, the asymptote of a non-asymptotic curve might be the line at infinity.

Additional Observations

- Curves can have more than one point at infinity.

\qquad
\qquad
- Parallel asymptotes create a node at infinity. $1+5 y z-5 y z^{3}=0$
 0 \qquad
\qquad
\qquad
\qquad

Two Cubic Functions

- When two cubic functions intersect in 9 points, 6 of them are at infinity. Why?
\qquad
\qquad
- Each cubic function has a cusp at infinity.
- Two cusps intersecting almost at their cuspidal point \qquad will intersect 6 times.

\qquad
\qquad
\qquad

