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Some Highlights along a 
Path to Elliptic Curves

Part 3:  Projective Geometry and Bezout’s Theorem

Steven J. Wilson, Fall 2016

Outline of the Series

1. The World of Algebraic Curves

2. Conic Sections and Rational Points

3. Projective Geometry and Bezout’s Theorem

4. Solving a Cubic Equation

5. Exploring Cubic Curves

6. Rational Points on Elliptic Curves

Fundamental Theorem of Algebra

 Every polynomial             with complex coefficients and 
degree            has at least one complex zero.

Corollary:

 Every polynomial             with complex coefficients and 

degree            can be factored into      linear factors.

 Equivalently:

 has       solutions, counting multiplicities.

 has at most      x-intercepts. 

( )P x
1n 

( )P x
1n  n

1 2( ) ( )( ) ( )nP x a x c x c x c   

( ) 0P x  n

( )y P x n
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Recognizing the Degree

 What is the degree?

2 x-intercepts
At least 2

Any horizontal line
At least 4

Any non-vertical line
At least 6

Extending the Fundamental Theorem

 If          is a polynomial of degree          , and           is a 
linear function, then the graphs of                  and 

intersect in at most      points.

Proof:

 Let                                   .  

 Then           is also a polynomial of degree    .

 By the corollary of the Fundamental Theorem of 

Algebra,           has at most      x-intercepts.

 Therefore                       has at most     solutions.

( )P x 2n  ( )L x
( )y P x

( )y L x n

( ) ( ) ( )f x P x L x 

( )f x n

( )f x n

( ) ( )P x L x n

Extending to Algebraic Curves

 If          is a polynomial 
of degree           ,

 and           is a linear 

function, 

 then the graphs of

and

 intersect in exactly      

points,

 counting multiplicities,

 in the complex plane.

 If              is a polynomial 
of degree          ,

 and              is a 

polynomial of degree

 with no common factors,

 then the graphs of 

and

 intersect in exactly 

points,

 counting multiplicities,

 in the complex plane,

 extended to include 

points at infinity.

( )P x

( )L x

( )y P x ( )y L x

2n 

n

( , )P x y
1n 

( , )Q x y
1m 

( , ) 0P x y  ( , ) 0Q x y 

mn

Fundamental Theorem Extended Bezout’s Theorem
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Example:  Parabola and Line

2 real solutions 2 nonreal
solutions

solution with
multiplicity 2

1 real, 1 infinite

2

(1 ) 1

y x

x y 

 


   

2

2

(1 ) 1

(1 ) 1 0

( 1)( 1) 0

1
1or

x x

x x

x x

x

 

 





   

   

  


 

Example:  Two Cubic Curves

9 real solutions 7 real with mult. 1
1 real with mult. 2

5 real
4 nonreal

3 real
1 at infinity with mult. 6

Projecting Infinity onto a Disk

 Unit Sphere:                           , and Plane:  

 Points:

 Segments: 

 Points:

 Inverting the formulas gives:

 This substitution projects                      onto the unit 

disk.  

 Points at infinity are mapped to the disk edge. 

 Antipodal points on disk edge must be 

considered identical.

2 2 2 1x y z   1z 

(0,0,0) and ( , ,1)O P x y

2 2 1, and 1OP x y OS   

2 2 2 2 2 2

1
, ,

1 1 1

OS x y
S P

OP x y x y x y

 
  
       

2 2 2 2
, ,0 ( , ,0)

1 1

x y
D u v

x y x y

 
  
     

2 2 2 2
( , ) ,

1 1

u v
x y

u v u v

 
  

    

( , ) 0P x y 
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Simple Curves on the Disk

Conics on the Unit Disk

Homogeneous Coordinates

 We can see infinity at the edge of the unit disk, but 
because that point is at the edge, we can’t yet really 

understand a curve’s behavior at infinity.

 The homogeneous coordinate system will assign three 
coordinates to a point in the extended real plane:

 If           , then               represents                in the plane.

 If            but            , then               represents the point

at infinity where the line through the origin with slope 

intersects the line at infinity.

 If                  but           , then               represents the point

at infinity where the y-axis intersects the line at infinity.

 The coordinates               do not exist in this system.

0z  ( , , )x y z ,
x y

z z

 
 
 

0z  0x  ( , ,0)x y
y

x

0z x  0y  (0, ,0)y

(0,0,0)



11/8/2016

5

Converting Points

From homogeneous to R2

 becomes:

 becomes: 

 becomes:

The point at infinity

on the line

 becomes: 

The point at infinity

on the x-axis.

From R2 to homogeneous 

 becomes:

 Point at infinity on line

is:  

 Point at infinity on x-axis 

is:

 Point at infinity on y-axis 
is:  

(5,8)

(5,8,1) or (10,16,2) or ...

2y x 

(1, 2,0) or (2, 4,0) or ... 

(1,0,0) or (2,0,0) or ...

(0,1,0) or (0,2,0) or ...

(5, 7,9)
5 7

,
9 9

 
 

 

(3,4,1) (3,4)

( 2,5,0)

5

2
y x 

(3,0,0)

Homogeneous Polynomials

 A polynomial is homogeneous if all of its terms have 
the same degree.

 We can homogenize a polynomial by introducing one 
more variable with an appropriate exponent.

2

4 2 5

3 5

2 3 6

4 3

x y

x y

x y xy



 



2 3

14 14

17 2

8 5 6

3

xy

x xy y

x y



 



2

2 3

2 3 6

17 2

8 5 6

x y

xy

x xy y

 



 

2 22 3 6x yz z 
217 2z xy

2 38 5 6x z xyz y 

Three Ways to Dehomogenize
 Example:                , when homogenized, is                   .  

 has a cusp at infinity.  It is singular.

3 0x y  3 2 0x yz 

Substitute: z=1 y=1 x=1

Origin: (0,0,1) (0,1,0) (1,0,0)

Visible Axes: y = 0, x = 0 z = 0, x = 0 z = 0, y = 0

Axis at infinity: z = 0 y = 0 x = 0
3 0x y  21 0yz 

3 2 0x z 

3 0x y 
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Properties

Suppose                is a homogeneous polynomial of 
degree         .  Then …

 The origin is a point on the graph of                    .

 For any          , .

 Proof:  Factor       from each term of                       .

 If                  is a point on the graph of                     ,
then so is every point on the line joining

with the origin.

 The graph of                       is a double cone (but rarely 
circular) with its vertex at the origin.

 The shape of the cone can be easily seen where it 

intersects the unit sphere.

( , , )f x y z

1n 

a R ( , , ) ( , , )nf ax ay az a f x y z

na ( , , )f ax ay az

( , , ) 0f x y z 

0 0 0( , , )x y z ( , , ) 0f x y z 

0 0 0( , , )x y z

( , , ) 0f x y z 

Viewing the Cone

 Example:                , when homogenized, is                   .

 The cone                                   is an algebraic variety.

 The algebraic curve                                          is a 

subvariety of the cone.

 The three dehomogenized polynomials are all 
subvarieties of the same algebraic variety.

3 0x y  3 2 0x yz 

 3 2( , , ) : 0x y z x yz 

 3 2( , , ) : 0, 1x y z x yz z  

A Second Example

 Consider:                             , same as: 

 Homogenizes as: 

 A triple point (node) at infinity.  It is singular.

4 25 5 0x x y y  

4 2 35 5 0x x yz yz  

4 25 5 0x x y y   4 2 35 5 0x x z z  
31 5 5 0yz yz  

4

25( 1)

x
y

x





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An Elliptic Curve Example

 Consider:                         , same as: 

 Homogenizes as: 

 The point at infinity is an ordinary point.

3 2 4 0x y x  

3 2 24 0x y z xz  

3 4y x x  

3 2 4 0x y x   3 24 0x z xz  
2 21 4 0y z z  

Intuiting Infinity: Asymptotes

 In each case the asymptote is the line tangent to the 
point at infinity (assuming that the limit of the slope 

exists)

Picture Point at Infinity

Ordinary Point

Inflection Point
(ordinary)

Cusp
(singular)

Ramphoid Cusp
(singular)

Intuiting Infinity: Non-Asymptotic

 In each case, the line at infinity is tangent to the curve 

at the point at infinity (assuming that the limit of the 

slope exists).  

 Or, the asymptote of a non-asymptotic curve might 

be the line at infinity.

Picture Point at Infinity

Cusp
(singular)

Inflection Point
(ordinary)

Ordinary Point

Ramphoid Cusp
(singular)
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Additional Observations

 Curves can have more than one point at infinity.

 Parallel asymptotes create a node at infinity.

1

1 0

y
x

xy



 

31 5 5 0yz yz  

Two Cubic Functions

 When two cubic functions intersect
in 9 points, 6 of them are at infinity.

Why?

 Each cubic function has a cusp at infinity.

 Two cusps intersecting almost at their cuspidal point 

will intersect 6 times.

Challenges

1. For each type of conic, find a homogeneous 
polynomial, and dehomogenize it in all 3 ways.  What 

do you find?

2. Graph the curve                                 .  Can you identify 

the features at infinity?  Then homogenize and 

dehomogenize it in all 3 ways.  Are the features as you 
expected? 

3 5 4 3 24 4y x x y x y  


