\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator {\sech} {sech} \)

Integermania!

Dave's Birthday

The digits of the birthday of Integermaniac master Dave Jones are 1, 7, 7, and 8. Create each of the positive integers using one copy of each number, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201+).

  401 (3.8)
$\dfrac{8!}{(7! + 7!)\%} + 1$
Paolo Pellegrini, 3/10
Martina Franca, Italy
402 (4.8)
$\ln\sqrt{\exp \left( \dfrac{7}{8\pmf} - 71 \right)}$
Steve Wilson, 6/23
Lawrence, KS
403 (3.6)
$(8! - (7 - 1)!)\% + 7$
Paolo Pellegrini, 3/10
Martina Franca, Italy
404 (3.6)
$\dfrac{7 + 7!\pmf - 8}{1\%}$
Ralph Jeffords, 9/08
Centreville, VA
405 (3.8)
$\dfrac{1}{.\overline{8}\pmf} - \dfrac{7!}{7}$
Paolo Pellegrini, 4/10
Martina Franca, Italy
406 (4.8)
$\dfrac{\ln\sqrt{\exp 7}}{1\%} + 8 \times 7$
Steve Wilson, 6/23
Lawrence, KS
407 (3.0)
$\dfrac{.\overline{8}}{(1-.\overline{7})\%} + 7$
Paolo Pellegrini, 4/10
Martina Franca, Italy
408 (3.8)
$\dfrac{17}{\sqrt{ \dfrac{.7}{8!\%}}}$
Paolo Pellegrini, 4/10
Martina Franca, Italy
409 (4.8)
$\dfrac{.\overline{1} - (8 - 7\%)\%}{\sqrt{.\overline{7}\%\%}}$
Paolo Pellegrini, 4/10
Martina Franca, Italy
410 (2.2)
$\dfrac{7 \times 7 - 8}{.1}$
Steve Wilson, 4/08
Raytown, MO
  411 (3.6)
$8 \times (7!\% + .1) + 7$
Steve Wilson, 1/10
Raytown, MO
412 (3.8)
$\dfrac{7+7}{\sqrt{.\overline{1}\%}} - 8$
Ralph Jeffords, 2/09
Centreville, VA
413 (4.0)
$\left(8 + \sqrt{.\overline{1}}\right) \times 7!\% - 7$
Paolo Pellegrini, 5/10
Martina Franca, Italy
414 (3.2)
$\dfrac{7-.1}{(.\overline{8} + .\overline{7})\%}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
415 (3.6)
$\dfrac{.1-.\overline{7}\%}{(.8 - .\overline{7})\%}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
416 (4.8)
$\ln\sqrt{\exp\left( \dfrac{7!}{7 - 1} - 8 \right)}$
Steve Wilson, 6/23
Lawrence, KS
417 (3.4)
$7! \times .1 - 87$
Paolo Pellegrini, 5/10
Martina Franca, Italy
418 (3.4)
$\dfrac{.7 \times .\overline{7} - 8\%}{.\overline{1}\%}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
419 (3.0)
$\dfrac{7}{(.\overline{8} + .\overline{7})\%} - 1$
Steve Wilson, 12/10
Raytown, MO
420 (2.6)
$\dfrac{7}{(8+7) \times .\overline{1}\%}$
Dave Jones, 6/08
Coventry, England
  421 (3.0)
$\dfrac{7}{(.\overline{8} + .\overline{7})\%} + 1$
Steve Wilson, 12/10
Raytown, MO
422 (5.4)
$\dfrac{7}{(.\overline{8} + .\overline{7})\%} - \log(1\%)$
Steve Wilson, 12/10
Raytown, MO
423 (3.6)
$\dfrac{8 + (1 - 7!)\pmf}{7\pmf}$
Paolo Pellegrini, 6/10
Martina Franca, Italy
424 (3.8)
$(7 - 8!\%\%) \times \dfrac{1}{7\pmf}$
Paolo Pellegrini, 6/10
Martina Franca, Italy
425 (3.6)
$\dfrac{.1 - (7 - .\overline{7})\%}{.\overline{8}\%\%}$
Paolo Pellegrini, 6/10
Martina Franca, Italy
426 (3.0)
$\dfrac{7.1}{(.\overline{8} + .\overline{7})\%}$
Paolo Pellegrini, 6/10
Martina Franca, Italy
427 (3.2)
$\dfrac{.7}{.\overline{18}\%} - .\overline{7}$
Paolo Pellegrini, 6/10
Martina Franca, Italy
428 (3.8)
$\dfrac{7+7}{\sqrt{.\overline{1}\%}} + 8$
Ralph Jeffords, 2/09
Centreville, VA
429 (4.0)
$\dfrac{8 + 7 - .7}{\sqrt{.\overline{1}\%}}$
Steve Wilson, 2/09
Raytown, MO
430 (3.6)
$\sqrt[ \sqrt{.\overline{1}}]{7} + 87$
Steve Wilson, 10/09
Raytown, MO
  431 (4.8)
$\ln\sqrt{\exp \left( \dfrac{7}{8\pmf} + 1 \right)} - 7$
Steve Wilson, 6/23
Lawrence, KS
432 (4.6)
$\ln\sqrt{\exp(871 - 7)}$
Steve Wilson, 6/23
Lawrence, KS
433 (2.4)
$7 \times \dfrac{7}{.\overline{1}} - 8$
Dave Jones, 6/08
Coventry, England
434 (2.2)
$7 \times \left( \dfrac{7}{.1} - 8 \right)$
Dave Jones, 5/08
Coventry, England
435 (3.6)
$\sqrt[ \sqrt{.\overline{1}}]{8} - 77$
Steve Wilson, 10/09
Raytown, MO
  437 (4.8)
$\dfrac{\ln\sqrt{\exp 7}}{1\%} + 87$
Steve Wilson, 6/23
Lawrence, KS
438 (4.6)
$\ln\sqrt{\exp(877 - 1)}$
Steve Wilson, 6/23
Lawrence, KS
439 (4.6)
$\ln\sqrt{\exp(871 + 7)}$
Steve Wilson, 6/23
Lawrence, KS
440 (4.8)
$\ln\sqrt{\exp \left( \dfrac{7}{8\pmf} + 7 \right)} - 1$
Steve Wilson, 6/23
Lawrence, KS
  441 (1.0)
$7 \times 7 \times (8 + 1)$
Dave Jones, 5/07
Coventry, England
442 (4.8)
$\dfrac{\ln\sqrt{\exp 87}}{.1} + 7$
Steve Wilson, 6/23
Lawrence, KS
443 (2.4)
$\dfrac{8}{1.\overline{7}\%} - 7$
Dave Jones, 6/08
Coventry, England
444 (3.8)
$\dfrac{7.8 + 7}{\sqrt{.\overline{1}\%}}$
Steve Wilson, 2/09
Raytown, MO
445 (4.8)
$\ln\sqrt{\exp \left( \dfrac{7}{8\pmf} + 1 \right)} + 7$
Steve Wilson, 6/23
Lawrence, KS
446 (4.8)
$\ln\sqrt{\exp \left( \dfrac{7}{8\pmf} + 17 \right)}$
Steve Wilson, 6/23
Lawrence, KS
  448 (1.0)
$8 \times 7 \times (7 + 1)$
Melody Tarbox, 3/07
Ottawa, KS
449 (2.4)
$7 \times \dfrac{7}{.\overline{1}} + 8$
Dave Jones, 6/08
Coventry, England
450 (2.4)
$\dfrac{8}{1.7\overline{7}\%}$
Dave Jones, 7/08
Coventry, England
  451 (5.0)
$\dfrac{8}{1.\overline{7}\%} + \cos(7!^\circ)$
Steve Wilson, 6/23
Lawrence, KS
      455 (2.4)
$7 \times \left( \dfrac{8}{.\overline{1}} - 7 \right)$
Dave Jones, 7/08
Coventry, England
  457 (2.4)
$\dfrac{8}{1.\overline{7}\%} + 7$
Dave Jones, 7/08
Coventry, England
    460 (2.8)
$\dfrac{.7 - 1\%}{(8+7)\%\%}$
Steve Wilson, 3/10
Raytown, MO
    462 (4.8)
$7 \times \left( \dfrac{7}{.1} - \ln\sqrt{\exp 8}\right)$
Steve Wilson, 6/23
Lawrence, KS
463 (3.6)
$\sqrt[\sqrt{.\overline{1}}]{8} - 7 \times 7$
Steve Wilson, 12/10
Raytown, MO
    466 (2.8)
$\dfrac{7-1\%}{(.8 + .7)\%}$
Steve Wilson, 3/10
Raytown, MO
  468 (2.0)
$(7 - 1) \times 78$
Dave Jones, 8/07
Coventry, England
  470 (4.8)
$\dfrac{\ln\sqrt{\exp (87 + 7)}}{.1}$
Steve Wilson, 8/23
Lawrence, KS
  471 (2.6)
$\dfrac{8 + .7\%}{1.7\%}$
Dave Jones, 7/08
Coventry, England
472 (4.8)
$\left( \dfrac{1}{7\pmf} - 8 \right) \times \ln\sqrt{\exp 7}$
Steve Wilson, 8/23
Lawrence, KS
473 (3.6)
$7! \times .\overline{1} - 87$
Steve Wilson, 12/10
Raytown, MO
  475 (4.8)
$\dfrac{\ln\sqrt{\exp (77 - 1)}}{8\%}$
Steve Wilson, 8/23
Lawrence, KS
476 (4.6)
$17 \times 7 \times \ln\sqrt{\exp 8}$
Steve Wilson, 8/23
Lawrence, KS
477 (4.8)
$\dfrac{ \ln\sqrt{\exp 8}}{1\%} + 77$
Steve Wilson, 6/23
Lawrence, KS
    480 (4.8)
$\dfrac{\ln\sqrt{\exp (8!)}}{7 \times (7 + 1)}$
Steve Wilson, 8/23
Lawrence, KS
  481 (4.8)
$\dfrac{\sech\ln 7}{7\%\%} + 81$
Steve Wilson, 6/23
Lawrence, KS
482 (2.2)
$7 \times \dfrac{7}{.1} - 8$
Jacob Smith, 11/07
Leawood, KS
      486 (4.8)
$\dfrac{7 \times 7}{.1} - \ln\sqrt{\exp 8}$
Steve Wilson, 6/23
Lawrence, KS
    489 (2.0)
$71 \times 7 - 8$
Melissa Mitchell, 11/07
Kansas City, KS
490 (2.2)
$\dfrac{8 \times 7 - 7}{.1}$
Steve Wilson, 4/08
Raytown, MO
  491 (4.8)
$\dfrac{ \ln\sqrt{\exp 7}}{7\pmf} - 8 - 1$
Steve Wilson, 6/23
Lawrence, KS
492 (4.8)
$\dfrac{ \ln\sqrt{\exp 7}}{7\pmf} - 8 \times 1$
Steve Wilson, 6/23
Lawrence, KS
493 (3.0)
$\dfrac{.\overline{8}}{.1\overline{7}\%} - 7$
Steve Wilson, 12/10
Raytown, MO
494 (4.8)
$\dfrac{7 \times 7}{.1} + \ln\sqrt{\exp 8}$
Steve Wilson, 6/23
Lawrence, KS
495 (4.8)
$71 \times 7 - \ln\sqrt{\sqrt{\exp 8}}$
Steve Wilson, 6/23
Lawrence, KS
496 (3.4)
$(7 - 1)! \times .7 - 8$
Steve Wilson, 8/08
Raytown, MO
497 (2.4)
$8 \times \dfrac{7}{.\overline{1}} - 7$
Brad Anderson, 9/07
Overland Park, KS
498 (2.2)
$7 \times \dfrac{7}{.1} + 8$
Ashley Barboza, 3/07
Overland Park, KS
499 (4.0)
$\dfrac{7!}{7!\% - 8!\pmf} - 1$
Steve Wilson, 12/10
Raytown, MO
500 (2.4)
$\dfrac{7}{(1-.8) \times 7\%}$
Dave Jones, 7/08
Coventry, England
  501 (4.0)
$\dfrac{7!}{7!\% - 8!\pmf} + 1$
Paolo Pellegrini, 7/10
Martina Franca, Italy
502 (3.8)
$\sqrt[\sqrt{.\overline{1}}]{8} - \dfrac{7}{.7}$
Paolo Pellegrini, 7/10
Martina Franca, Italy
503 (3.4)
$7! \times .1 - 8 + 7$
Steve Wilson, 9/08
Raytown, MO
504 (2.2)
$8 \times \left( \dfrac{7}{.1} - 7 \right)$
Jacob Smith, 10/07
Leawood, KS
505 (2.0)
$71 \times 7 + 8$
Dave Jones, 1/08
Coventry, England
506 (3.6)
$\dfrac{ \dfrac{8!\%}{7} - 7}{.1}$
Paolo Pellegrini, 7/10
Martina Franca, Italy
507 (3.0)
$\dfrac{.\overline{8}}{.1\overline{7}\%} + 7$
Paolo Pellegrini, 7/10
Martina Franca, Italy
508 (4.8)
$\dfrac{ \ln\sqrt{\exp 7}}{7\pmf} + 8 \times 1$
Steve Wilson, 6/23
Lawrence, KS
509 (4.8)
$\dfrac{ \ln\sqrt{\exp 7}}{7\pmf} + 8 + 1$
Steve Wilson, 6/23
Lawrence, KS
510 (3.8)
$\dfrac{8.7-7}{\sqrt{.\overline{1}}\%}$
Paolo Pellegrini, 7/10
Martina Franca, Italy
  511 (2.2)
$7 \times \left( \dfrac{8}{.1} - 7 \right)$
Dave Jones, 5/08
Coventry, England
512 (2.0)
$(71 - 7) \times 8$
Dave Jones, 1/08
Coventry, England
513 (2.4)
$\dfrac{7 \times 7 + 8}{.\overline{1}}$
Dave Jones, 10/08
Coventry, England
        518 (2.0)
$(81 - 7) \times 7$
Dave Jones, 1/08
Coventry, England
519 (3.4)
$7! \times .1 + 8 + 7$
Steve Wilson, 9/08
Raytown, MO
520 (4.8)
$\dfrac{78}{\ln\sqrt{\exp (1 - .7)}}$
Steve Wilson, 8/23
Lawrence, KS
    522 (2.0)
$87 \times (7 - 1)$
Jacob Smith, 11/07
Leawood, KS
    525 (2.2)
$(7 - 1) \times \dfrac{7}{8\%}$
Dave Jones, 5/08
Coventry, England
526 (3.6)
$\sqrt[\sqrt{.\overline{1}}]{8} + 7 + 7$
Steve Wilson, 12/10
Raytown, MO
      530 (4.8)
$\dfrac{7 \times 7 + \ln\sqrt{\exp 8}}{.1}$
Steve Wilson, 6/23
Lawrence, KS
    532 (4.4)
$7 \times (78 + \log(1\%))$
Steve Wilson, 6/23
Lawrence, KS
      536 (4.6)
$78 \times 7 - \cot\arctan(.1)$
Steve Wilson, 6/23
Lawrence, KS
537 (4.8)
$78 \times 7 - \cot\arctan(.\overline{1})$
Steve Wilson, 6/23
Lawrence, KS
538 (4.8)
$78 \times 7 + \log(1\%\pmm)$
Steve Wilson, 6/23
Lawrence, KS
539 (2.0)
$(78 - 1) \times 7$
Dave Jones, 1/08
Coventry, England
540 (3.2)
$\dfrac{.7 + .7 - .8}{.\overline{1}\%}$
Steve Wilson, 12/10
Raytown, MO
  541 (4.6)
$78 \times 7 + \log(1\%\pm)$
Steve Wilson, 6/23
Lawrence, KS
542 (4.6)
$78 \times 7 + \log(1\%\%)$
Steve Wilson, 6/23
Lawrence, KS
543 (2.8)
$\dfrac{.7}{.\overline{1}\%} - 87$
Dave Jones, 10/08
Coventry, England
544 (4.4)
$78 \times 7 + \log(1\%)$
Jacob Smith, 12/07
Leawood, KS
545 (2.0)
$78 \times 7 - 1$
Brad Anderson, 9/07
Overland Park, KS
546 (2.0)
$78 \times 7 \times 1$
Brad Anderson, 9/07
Overland Park, KS
547 (2.0)
$78 \times 7 + 1$
Brad Anderson, 9/07
Overland Park, KS
548 (4.4)
$78 \times 7 - \log(1\%)$
Jacob Smith, 12/07
Leawood, KS
549 (4.4)
$78 \times 7 - \log(1\pm)$
Steve Wilson, 12/10
Raytown, MO
550 (2.6)
$\dfrac{7}{7\% \times .\overline{18}}$
Ralph Jeffords, 11/08
Centreville, VA
  551 (4.6)
$78 \times 7 - \log(1\%\pm)$
Steve Wilson, 6/23
Lawrence, KS
552 (2.8)
$\dfrac{.7}{.\overline{1}\%} - 78$
Dave Jones, 10/08
Coventry, England
553 (2.0)
$(78 + 1) \times 7$
Dave Jones, 1/08
Coventry, England
554 (4.8)
$78 \times 7 - \log(1\%\pmm)$
Steve Wilson, 6/23
Lawrence, KS
555 (4.2)
$\dfrac{7!\pmf - .7 + .1}{.8\pmf}$
Paolo Pellegrini, 6/09
Martina Franca, Italy
556 (4.6)
$78 \times 7 + \cot\arctan(.1)$
Steve Wilson, 6/23
Lawrence, KS
557 (5.4)
$\dfrac{7!\pmf}{.\overline{8}\%} - 7 + \log(1\pm)$
Steve Wilson, 12/10
Raytown, MO
558 (5.4)
$\dfrac{7!\pmf}{.\overline{8}\%} - 7 + \log(1\%)$
Steve Wilson, 12/10
Raytown, MO
559 (3.2)
$\dfrac{7!}{8} - 71$
Steve Wilson, 9/08
Raytown, MO
560 (2.0)
$7 \times 81 - 7$
Dave Jones, 2/08
Coventry, England
  561 (2.0)
$71 \times 8 - 7$
Melissa Mitchell, 11/07
Kansas City, KS
562 (5.4)
$\dfrac{7!\pmf}{.\overline{8}\%} - 7 - \log(1\%)$
Steve Wilson, 12/10
Raytown, MO
563 (5.4)
$\dfrac{7!\pmf}{.\overline{8}\%} - 7 - \log(1\pm)$
Steve Wilson, 12/10
Raytown, MO
    566 (4.6)
$7 \times 81 - \cos(7!^\circ)$
Steve Wilson, 6/23
Lawrence, KS
567 (2.2)
$8 \times \dfrac{7}{.1} + 7$
Jacob Smith, 10/07
Leawood, KS
568 (3.4)
$71 \times \dfrac{8!}{7!}$
Kevin Schwarz, 10/07
Olathe, KS
569 (3.4)
$\dfrac{8! \times .1}{7} - 7$
Steve Wilson, 6/23
Lawrence, KS
570 (2.2)
$\dfrac{7 \times 7 + 8}{.1}$
Steve Wilson, 4/08
Raytown, MO
  571 (5.4)
$\dfrac{7!\pmf}{.\overline{8}\%} + 7 + \log(1\pm)$
Steve Wilson, 12/10
Raytown, MO
572 (5.4)
$\dfrac{7!\pmf}{.\overline{8}\%} + 7 + \log(1\%)$
Steve Wilson, 12/10
Raytown, MO
573 (4.0)
$\dfrac{7!\pmf}{.\overline{8}\%} + 7 - 1$
Paolo Pellegrini, 6/09
Martina Franca, Italy
574 (2.0)
$7 \times 81 + 7$
Dave Jones, 2/08
Coventry, England
575 (2.0)
$71 \times 8 + 7$
Melissa Mitchell, 11/07
Kansas City, KS
576 (3.4)
$\dfrac{7!}{7} \times .8 \times 1$
Steve Wilson, 12/10
Raytown, MO
577 (3.4)
$\dfrac{7!}{7} \times .8 + 1$
Steve Wilson, 12/10
Raytown, MO
578 (4.8)
$\dfrac{7!}{7} \times .8 - \log(1\%)$
Steve Wilson, 12/10
Raytown, MO
579 (4.8)
$\dfrac{7!}{7} \times .8 - \log(1\pm)$
Steve Wilson, 12/10
Raytown, MO
580 (4.8)
$\dfrac{87}{\ln\sqrt{\exp (1 - .7)}}$
Steve Wilson, 8/23
Lawrence, KS
  581 (4.8)
$\dfrac{ \ln\sqrt{\exp 7}}{7\pmf} + 81$
Steve Wilson, 6/23
Lawrence, KS
582 (3.4)
$7! \times .1 + 78$
Jonathan Frank, 6/21
Rye, NY
583 (3.4)
$\dfrac{8! \times .1}{7} + 7$
Steve Wilson, 6/23
Lawrence, KS
584 (3.6)
$\dfrac{8!\pmf}{7\%} + 7 + 1$
Steve Wilson, 6/23
Lawrence, KS
585 (4.6)
$78 \times (7 + \ln\sqrt{\exp 1})$
Steve Wilson, 6/23
Lawrence, KS
      589 (3.6)
$\sqrt[\sqrt{.\overline{1}}]{8} + 77$
Steve Wilson, 12/10
Raytown, MO
 
  591 (3.4)
$7! \times .1 + 87$
Jonathan Frank, 6/21
Rye, NY
  593 (3.6)
$\dfrac{8}{\sqrt{1.\overline{7}}\%} - 7$
Ralph Jeffords, 2/09
Centreville, VA
  595 (3.4)
$\dfrac{7!}{7} - \dfrac{1}{8\pmf}$
Steve Wilson, 12/10
Raytown, MO
        600 (2.2)
$\dfrac{7 \times 7 - 1}{8\%}$
Dave Jones, 5/08
Coventry, England
  601 (4.8)
$87 \times 7 + \log(1\%\pmm)$
Steve Wilson, 6/23
Lawrence, KS
602 (2.0)
$7 \times (87 - 1)$
Dave Jones, 2/08
Coventry, England
603 (4.6)
$87 \times 7 + \log(1\pmm)$
Steve Wilson, 6/23
Lawrence, KS
604 (4.6)
$87 \times 7 + \log(1\%\pm)$
Steve Wilson, 6/23
Lawrence, KS
605 (4.6)
$87 \times 7 + \log(1\%\%)$
Steve Wilson, 6/23
Lawrence, KS
606 (4.4)
$87 \times 7 + \log(1\pm)$
Steve Wilson, 12/10
Raytown, MO
607 (3.6)
$\dfrac{8}{\sqrt{1.\overline{7}}\%} + 7$
Steve Wilson, 12/10
Raytown, MO
608 (2.0)
$87 \times 7 - 1$
Melissa Mitchell, 10/07
Kansas City, KS
609 (2.0)
$87 \times 7 \times 1$
Regina Hillman, 9/07
Bucyrus, KS
610 (2.0)
$87 \times 7 + 1$
Ashley Barboza, 3/07
Overland Park, KS
  611 (4.4)
$87 \times 7 - \log(1\%)$
Steve Wilson, 12/10
Raytown, MO
612 (3.8)
$\sqrt[\sqrt{.\overline{1}}]{8} + \dfrac{7}{7\%}$
Steve Wilson, 12/10
Raytown, MO
613 (2.2)
$\dfrac{7}{1\%} - 87$
Dave Jones, 5/08
Coventry, England
614 (4.4)
$77 \times 8 + \log(1\%)$
Steve Wilson, 12/10
Raytown, MO
615 (2.0)
$77 \times 8 - 1$
Jacob Smith, 11/07
Leawood, KS
616 (2.0)
$77 \times 8 \times 1$
Ashley Barboza, 3/07
Overland Park, KS
617 (2.0)
$77 \times 8 + 1$
Ashley Barboza, 3/07
Overland Park, KS
618 (4.4)
$77 \times 8 - \log(1\%)$
Jacob Smith, 12/07
Leawood, KS
619 (4.4)
$77 \times 8 - \log(1\pm)$
Steve Wilson, 12/10
Raytown, MO
620 (2.6)
$\dfrac{1-7\%}{(8+7)\%\%}$
Steve Wilson, 3/10
Raytown, MO
  621 (2.4)
$\dfrac{77-8}{.\overline{1}}$
Dave Jones, 10/08
Coventry, England
622 (2.2)
$\dfrac{7}{1\%} - 78$
Dave Jones, 10/08
Coventry, England
623 (2.8)
$\dfrac{.7}{(1-.\overline{8})\%} - 7$
Steve Wilson, 4/10
Raytown, MO
624 (2.0)
$8 \times (77 + 1)$
Brad Anderson, 1/08
Overland Park, KS
625 (2.2)
$\dfrac{7 \times 7 + 1}{8\%}$
Dave Jones, 11/08
Coventry, England
626 (4.6)
$\dfrac{7!}{8} - 7 - \log(1\pm)$
Steve Wilson, 12/10
Raytown, MO
627 (2.4)
$\dfrac{7-.8}{1\%} + 7$
Dave Jones, 11/08
Coventry, England
628 (4.8)
$\dfrac{7!}{8} - 7 - \log(1\%\pm)$
Steve Wilson, 6/23
Lawrence, KS
629 (2.8)
$\dfrac{.7}{.\overline{1}\%} - 8 + 7$
Dave Jones, 11/08
Coventry, England
630 (2.2)
$\dfrac{8 \times 7 + 7}{.1}$
Steve Wilson, 4/08
Raytown, MO
  631 (2.8)
$\dfrac{.7}{.\overline{1}\%} + 8 - 7$
Dave Jones, 11/08
Coventry, England
632 (4.6)
$\dfrac{7 + \log(1\%)}{8\pmf} + 7$
Steve Wilson, 6/23
Lawrence, KS
633 (3.2)
$(7 - 1)! - 87$
Steve Wilson, 12/10
Raytown, MO
634 (4.6)
$\dfrac{7!}{8} + 7 + \log(1\pm)$
Steve Wilson, 12/10
Raytown, MO
635 (4.6)
$\dfrac{7!}{8} + 7 + \log(1\%)$
Steve Wilson, 12/10
Raytown, MO
636 (3.2)
$\dfrac{7!}{8} + 7 - 1$
Brad Anderson, 1/08
Overland Park, KS
637 (2.8)
$\dfrac{.7}{(1-.\overline{8})\%} + 7$
Steve Wilson, 4/10
Raytown, MO
638 (2.4)
$\dfrac{7-.7}{1\%} + 8$
Dave Jones, 11/08
Coventry, England
639 (2.4)
$\dfrac{78-7}{.\overline{1}}$
Dave Jones, 12/08
Coventry, England
640 (3.4)
$\dfrac{7!}{7} - \dfrac{8}{.1}$
Steve Wilson, 12/10
Raytown, MO
  641 (3.6)
$\dfrac{7!}{7} \times .\overline{8} + 1$
Brad Anderson, 5/08
Overland Park, KS
642 (3.2)
$(7 - 1)! - 78$
Steve Wilson, 12/10
Raytown, MO
643 (2.8)
$\dfrac{.8}{.\overline{1}\%} - 77$
Dave Jones, 12/08
Coventry, England
644 (2.2)
$\dfrac{7}{1\%} - 8 \times 7$
Dave Jones, 12/08
Coventry, England
645 (2.8)
$\dfrac{.7}{.\overline{1}\%} + 8 + 7$
Dave Jones, 12/08
Coventry, England
646 (3.6)
$\dfrac{ \dfrac{8!\%}{7} + 7}{.1}$
Steve Wilson, 12/10
Raytown, MO
647 (3.2)
$\dfrac{7!}{8} + 17$
Steve Wilson, 9/08
Raytown, MO
648 (2.8)
$\dfrac{7}{.\overline{7}} \times \dfrac{8}{.\overline{1}}$
Dave Jones, 12/08
Coventry, England
649 (4.0)
$\dfrac{7!\pmf}{.\overline{7}\%} + 1^8$
Steve Wilson, 6/23
Lawrence, KS
 
  651 (4.2)
$\dfrac{7!\pmf}{.\overline{7}\%} + \sqrt{8 + 1}$
Steve Wilson, 6/23
Lawrence, KS
    654 (4.4)
$\dfrac{7!\pmf}{.\overline{7}\%} + (\sqrt{8 + 1})!$
Steve Wilson, 6/23
Lawrence, KS
655 (4.0)
$\dfrac{7!\pmf}{.\overline{7}\%} + 8 - 1$
Paolo Pellegrini, 6/09
Martina Franca, Italy
656 (4.0)
$\dfrac{7!\pmf}{.\overline{7}\%} + 8 \times 1$
Steve Wilson, 12/10
Raytown, MO
657 (4.0)
$\dfrac{7!\pmf}{.\overline{7}\%} + 8 + 1$
Steve Wilson, 12/10
Raytown, MO
    660 (2.6)
$\dfrac{8-.7-.7}{1\%}$
Dave Jones, 1/09
Coventry, England
  661 (4.8)
$\dfrac{7}{1\%} - \ln\sqrt{\exp 78}$
Steve Wilson, 7/23
Lawrence, KS
662 (2.8)
$\dfrac{1-.7\%}{(8+7)\%\%}$
Steve Wilson, 4/10
Raytown, MO
663 (4.6)
$17 \times \ln\sqrt{\exp 78}$
Steve Wilson, 8/23
Lawrence, KS
664 (3.2)
$(7 - 1)! - 8 \times 7$
Steve Wilson, 12/10
Raytown, MO
665 (3.6)
$\dfrac{8!\pmf}{(7 - 1)\%} - 7$
Steve Wilson, 6/23
Lawrence, KS
666 (4.0)
$\dfrac{7!\pmf}{.\overline{7}\%} + 18$
Steve Wilson, 12/10
Raytown, MO
  668 (2.6)
$\dfrac{7-1}{.\overline{8}\%} - 7$
Dave Jones, 1/09
Coventry, England
   
  671 (2.8)
$\dfrac{.8}{.\overline{1}\%} - 7 \times 7$
Dave Jones, 1/09
Coventry, England
672 (3.6)
$\dfrac{8!\pmf}{\left(7 - 1^7 \right)\%}$
Steve Wilson, 6/23
Lawrence, KS
673 (4.8)
$\dfrac{7!}{\ln\sqrt{\exp (8 + 7)}} + 1$
Steve Wilson, 8/23
Lawrence, KS
  675 (3.6)
$\dfrac{7 - 1^7}{.\overline{8}\%}$
Steve Wilson, 12/10
Raytown, MO
      679 (3.6)
$\dfrac{8!\pmf}{(7 - 1)\%} + 7$
Steve Wilson, 6/23
Lawrence, KS
680 (3.8)
$7! \times \sqrt{1.\overline{7}\%} + 8$
Ralph Jeffords, 3/09
Centreville, VA
  681 (4.8)
$(7 - 1)! - \ln\sqrt{\exp 78}$
Steve Wilson, 6/23
Lawrence, KS
682 (2.6)
$\dfrac{7-1}{.\overline{8}\%} + 7$
Dave Jones, 1/09
Coventry, England
    685 (2.2)
$\dfrac{7}{1\%} - 8 - 7$
Steve Wilson, 8/08
Raytown, MO
686 (2.8)
$\dfrac{.7}{.\overline{1}\%} + 8 \times 7$
Dave Jones, 1/09
Coventry, England
687 (4.8)
$\dfrac{\sqrt{7^8}}{\ln\sqrt{\exp 7}} + 1$
Steve Wilson, 8/23
Lawrence, KS
  689 (4.8)
$\dfrac{7}{1\%} - 7 - \ln\sqrt{\exp 8}$
Steve Wilson, 6/23
Lawrence, KS
690 (2.2)
$\dfrac{77-8}{.1}$
Dave Jones, 9/08
Coventry, England
    692 (3.2)
$\dfrac{7}{1^7\%} - 8$
Steve Wilson, 6/23
Lawrence, KS
693 (2.0)
$77 \times (8 + 1)$
Dave Jones, 2/08
Coventry, England
  695 (2.4)
$\dfrac{78}{.\overline{1}} - 7$
Dave Jones, 9/08
Coventry, England
696 (2.0)
$87 \times (7 + 1)$
Dave Jones, 2/08
Coventry, England
697 (4.4)
$\dfrac{.\overline{7} - 8\% - .\overline{7}\pmf}{1\pmf}$
Steve Wilson, 7/23
Lawrence, KS
698 (4.6)
$\dfrac{7}{1\%} + \log((8 - 7)\%)$
Steve Wilson, 12/10
Raytown, MO
699 (2.2)
$\dfrac{7}{1\%} - 8 + 7$
Dave Jones, 9/08
Coventry, England
700 (2.2)
$\dfrac{7}{7\%} \times (8 - 1)$
Carolyn Neptune, 6/07
Prairie Village, KS
  701 (2.2)
$\dfrac{7}{1\%} + 8 - 7$
Dave Jones, 9/08
Coventry, England
702 (3.2)
$\dfrac{7!}{7} - 18$
Steve Wilson, 12/10
Raytown, MO
703 (4.6)
$\dfrac{7}{1\%} - \log((8 - 7)\pm)$
Steve Wilson, 12/10
Raytown, MO
  705 (3.2)
$(7 - 1)! - 8 - 7$
Steve Wilson, 12/10
Raytown, MO
706 (2.8)
$\dfrac{.8}{.\overline{1}\%} - 7 - 7$
Dave Jones, 9/08
Coventry, England
707 (3.2)
$\dfrac{7}{1^8\%} + 7$
Steve Wilson, 6/23
Lawrence, KS
708 (2.8)
$\dfrac{.7}{.\overline{1}\%} + 78$
Dave Jones, 2/09
Coventry, England
709 (2.0)
$717 - 8$
Melissa Mitchell, 10/07
Kansas City, KS
710 (2.2)
$\dfrac{78-7}{.1}$
Dave Jones, 2/09
Coventry, England
  711 (2.0)
$718 - 7$
Melissa Mitchell, 10/07
Kansas City, KS
712 (2.8)
$8 \times \left( \dfrac{.7}{.\overline{7}\%} - 1 \right)$
Dave Jones, 2/09
Coventry, England
713 (2.8)
$7 \times \left( \dfrac{.8}{.\overline{7}\%} - 1 \right)$
Dave Jones, 2/09
Coventry, England
714 (3.6)
$\dfrac{7!}{7} - \left( \sqrt{8+1} \right)!$
Steve Wilson, 12/10
Raytown, MO
715 (2.2)
$\dfrac{7}{1\%} + 8 + 7$
Kevin Solecki, 10/08
Olathe, KS
716 (4.8)
$(7 - 1^7)! - \ln\sqrt{\exp 8}$
Steve Wilson, 6/23
Lawrence, KS
717 (2.8)
$\dfrac{.7}{.\overline{1}\%} + 87$
Dave Jones, 2/09
Coventry, England
718 (3.8)
$\dfrac{7!}{7} - 8^{\sqrt{.\overline{1}}}$
Steve Wilson, 12/10
Raytown, MO
719 (2.8)
$\dfrac{.7}{.\overline{7}\%} \times 8 - 1$
Kevin Schwarz, 2/09
Olathe, KS
720 (2.4)
$\dfrac{87-7}{.\overline{1}}$
Dave Jones, 5/09
Coventry, England
  721 (2.8)
$\dfrac{.7}{.\overline{7}\%} \times 8 + 1$
Kevin Schwarz, 2/09
Olathe, KS
722 (3.8)
$\dfrac{7!}{7} + 8^{\sqrt{.\overline{1}}}$
Steve Wilson, 12/10
Raytown, MO
723 (2.2)
$\dfrac{8}{1\%} - 77$
Kevin Solecki, 10/08
Olathe, KS
724 (4.8)
$(7 - 1^7)! + \ln\sqrt{\exp 8}$
Steve Wilson, 6/23
Lawrence, KS
725 (2.0)
$718 + 7$
Brad Anderson, 1/08
Overland Park, KS
726 (3.6)
$\dfrac{7!}{7} + \left( \sqrt{8+1} \right)!$
Steve Wilson, 12/10
Raytown, MO
727 (2.8)
$7 \times \left( \dfrac{.8}{.\overline{7}\%} + 1 \right)$
Dave Jones, 3/09
Coventry, England
728 (2.8)
$8 \times \left( \dfrac{.7}{.\overline{7}\%} + 1 \right)$
Dave Jones, 3/09
Coventry, England
729 (2.4)
$\dfrac{7}{.\overline{7}} \times 81$
Dave Jones, 3/09
Coventry, England
730 (3.0)
$\dfrac{.8}{.\overline{1}\%} + \dfrac{7}{.7}$
Steve Wilson, 12/10
Raytown, MO
  731 (4.8)
$(7 - 1)! + 7 + \ln\sqrt{\exp 8}$
Steve Wilson, 6/23
Lawrence, KS
  733 (4.4)
$\left(\sqrt{\sqrt{(.\overline{1}\%)^{-8}}}\right)\pm - 77$
Steve Wilson, 8/23
Lawrence, KS
734 (2.8)
$\dfrac{.8}{.\overline{1}\%} + 7 + 7$
Dave Jones, 3/09
Coventry, England
735 (3.2)
$(7 - 1)! + 8 + 7$
Steve Wilson, 12/10
Raytown, MO
  737 (2.4)
$\dfrac{8-.7}{1\%} + 7$
Dave Jones, 3/09
Coventry, England
738 (3.2)
$\dfrac{7!}{7} + 18$
Steve Wilson, 12/10
Raytown, MO
739 (4.8)
$\dfrac{7}{1\%} + \ln\sqrt{\exp 78}$
Steve Wilson, 7/23
Lawrence, KS
 
      743 (2.4)
$\dfrac{7-1}{.8\%} - 7$
Dave Jones, 4/09
Coventry, England
744 (3.8)
$\dfrac{7!}{7} + \dfrac{8}{\sqrt{.\overline{1}}}$
Steve Wilson, 12/10
Raytown, MO
      748 (4.8)
$(7 - 1)! + 7 \times \ln\sqrt{\exp 8}$
Steve Wilson, 6/23
Lawrence, KS
749 (4.6)
$7 \times (\cot\arctan(1^8 \%) + 7)$
Steve Wilson, 6/23
Lawrence, KS
750 (3.2)
$\dfrac{7-1^7}{8 \pmf}$
Steve Wilson, 12/10
Raytown, MO
  751 (2.2)
$\dfrac{8}{1\%} - 7 \times 7$
Dave Jones, 4/09
Coventry, England
        756 (2.2)
$\dfrac{7}{1\%} + 7 \times 8$
Dave Jones, 4/09
Coventry, England
757 (2.4)
$\dfrac{7-1}{.8\%} + 7$
Dave Jones, 4/09
Coventry, England
  759 (4.8)
$(7 - 1)! + \ln\sqrt{\exp 78}$
Steve Wilson, 6/23
Lawrence, KS
760 (4.0)
$\dfrac{7}{7 \pmf} - \dfrac{8}{\sqrt{.\overline{1}\%}}$
Paolo Pellegrini, 6/09
Martina Franca, Italy
  761 (4.4)
$\left(\sqrt{\sqrt{(.\overline{1}\%)^{-8}}}\right)\pm - 7 \times 7$
Steve Wilson, 8/23
Lawrence, KS
762 (2.2)
$\dfrac{77}{.1} - 8$
Steve Wilson, 4/09
Raytown, MO
763 (2.0)
$771 - 8$
Ed Cockman, 5/07
Pleasant Hill, MO
  765 (2.4)
$\dfrac{78+7}{.\overline{1}}$
Dave Jones, 4/09
Coventry, England
766 (4.8)
$\dfrac{77}{.1} - \ln\sqrt{\exp 8}$
Steve Wilson, 6/23
Lawrence, KS
767 (4.6)
$771 - \ln\sqrt{\exp 8}$
Steve Wilson, 6/23
Lawrence, KS
  769 (2.8)
$\dfrac{.8}{.\overline{1}\%} + 7 \times 7$
Dave Jones, 5/09
Coventry, England
770 (2.8)
$\dfrac{7-.7}{.\overline{81}\%}$
Dave Jones, 5/09
Coventry, England
  771 (3.6)
$\sqrt{ \sqrt{ \sqrt{ 771^8}}}$
Kevin Schwarz, 3/09
Olathe, KS
772 (4.6)
$778 + \log(1\pmm)$
Steve Wilson, 6/23
Lawrence, KS
773 (2.2)
$\dfrac{78}{.1} - 7$
Steve Wilson, 4/09
Raytown, MO
774 (2.0)
$781 - 7$
Dave Jones, 8/08
Coventry, England
775 (2.8)
$\dfrac{7-.7-.1}{.8\%}$
Dave Jones, 5/09
Coventry, England
776 (2.4)
$\dfrac{87}{.\overline{1}} - 7$
Dave Jones, 5/09
Coventry, England
777 (2.0)
$778 - 1$
Melissa Mitchell, 10/07
Kansas City, KS
778 (2.0)
$778 \times 1$
Travis Meek, 10/07
Lenexa, KS
779 (2.0)
$778 + 1$
Ed Cockman, 5/07
Pleasant Hill, MO
780 (3.2)
$\dfrac{7.8}{1^7 \%}$
Paolo Pellegrini, 8/09
Martina Franca, Italy
  781 (4.4)
$778 - \log(1\pm)$
Steve Wilson, 12/10
Raytown, MO
782 (4.6)
$778 - \log(1\%\%)$
Steve Wilson, 12/10
Raytown, MO
783 (3.0)
$\dfrac{.8\overline{7}}{.\overline{1}\%} - 7$
Paolo Pellegrini, 6/09
Martina Franca, Italy
784 (3.2)
$\dfrac{.\overline{7}}{.1\%} + 7 \times .\overline{8}$
Paolo Pellegrini, 8/09
Martina Franca, Italy
785 (3.2)
$\dfrac{.\overline{7}}{.1\%} + 8 - .\overline{7}$
Paolo Pellegrini, 8/09
Martina Franca, Italy
786 (2.0)
$787 - 1$
Regina Hillman, 9/07
Bucyrus, KS
787 (2.0)
$787 \times 1$
Brad Anderson, 5/08
Overland Park, KS
788 (2.0)
$787 + 1$
Regina Hillman, 9/07
Bucyrus, KS
789 (4.4)
$787 - \log(1\%)$
Steve Wilson, 12/10
Raytown, MO
790 (2.4)
$\dfrac{87}{.\overline{1}} + 7$
Paolo Pellegrini, 8/09
Martina Franca, Italy
  791 (2.6)
$\dfrac{8}{1\%} - \dfrac{7}{.\overline{7}}$
Steve Wilson, 4/10
Raytown, MO
792 (2.2)
$8 \times \left( \dfrac{7}{7\%} - 1 \right)$
Steve Wilson, 4/10
Raytown, MO
793 (2.2)
$7 \times \left( \dfrac{8}{7\%} - 1 \right)$
Steve Wilson, 5/10
Raytown, MO
794 (3.6)
$\dfrac{8!}{7!\%} - 7 + 1$
Steve Wilson, 8/23
Lawrence, KS
795 (4.8)
$\dfrac{8}{1\%} + \log\left( \dfrac{7\%\pmf}{7} \right)$
Steve Wilson, 6/23
Lawrence, KS
796 (4.4)
$\left(\sqrt{\sqrt{(.\overline{1}\%)^{-8}}}\right)\pm - 7 - 7$
Steve Wilson, 8/23
Lawrence, KS
797 (2.8)
$\dfrac{.8}{.\overline{1}\%} + 77$
Steve Wilson, 5/10
Raytown, MO
798 (3.2)
$(7 - 1)! + 78$
Steve Wilson, 12/10
Raytown, MO
799 (2.2)
$\dfrac{8}{1\%} - \dfrac77$
Kevin Solecki, 10/08
Olathe, KS
800 (2.2)
$\dfrac{7}{7\%} \times 8 \times 1$
Carolyn Neptune, 6/07
Prairie Village, KS

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201+).