\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \)

Integermania!

Digits of Pi

This Integermania problem is a bit different than the others, as different digits will be used to create each of the integers. In particular, the following two ADDITIONAL rules must be met:

Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here! Five "new" or "improved" solutions per person per month are accepted.

Page 1 (1-400).

                    0 (1.0)
$0 + 0 + 0 + 0 \times 3.$
Steve Wilson, 3/23
Lawrence, KS
  1 (1.0)
$\dfrac{1 \times 4 + 1 \times 5}{9}$
Steve Wilson, 3/23
Lawrence, KS
2 (1.0)
$\dfrac{2 \times 6 - 5 + 3}{5}$
Dana Reigle, 3/23
Lewisburg, PA
3 (1.0)
$(8 + 9 - 7 - 9) \times 3$
Dana Reigle, 3/23
Lewisburg, PA
4 (1.0)
$2 \times 3 + 8 - 4 - 6$
Dana Reigle, 3/23
Lewisburg, PA
5 (1.0)
$2 - (6 - 4 - 3) \times 3$
Dana Reigle, 3/23
Lewisburg, PA
6 (1.0)
$(8 + 3) \times 2 - 7 - 9$
Dana Reigle, 3/23
Lewisburg, PA
7 (1.0)
$5 + 0 + 2 + 8 - 8$
Steve Wilson, 3/23
Lawrence, KS
8 (1.0)
$4 + 1 + 9 - 7 + 1$
Steve Wilson, 3/23
Lawrence, KS
9 (1.0)
$6 + \dfrac93 + 9 - 9$
Steve Wilson, 3/23
Lawrence, KS
10 (1.0)
$(3 + 7) + (5 + 1) \times 0$
Jacob Heasley, 3/23
York, PA
  11 (1.0)
$\dfrac{5 \times 8}{2} + 0 - 9$
Jacob Heasley, 3/23
York, PA
12 (1.0)
$7 + 4 + 9 - 4 - 4$
Jacob Heasley, 3/23
York, PA
13 (1.0)
$5 + 9 + 2 - 3 + 0$
Jacob Heasley, 3/23
York, PA
14 (1.0)
$\dfrac{7}{8 \times 1 - 6} \times 4$
Jacob Heasley, 3/23
York, PA
15 (2.2)
$0 + \dfrac{6}{.2 \times (8 - 6)}$
Steve Wilson, 4/23
Lawrence, KS
16 (1.0)
$(2 + 0) \times 8 + 9 - 9$
Dana Reigle, 4/23
Lewisburg, PA
17 (2.4)
$8 + \dfrac{6 + 2}{.\overline{8}} + 0$
Steve Wilson, 4/23
Lawrence, KS
18 (1.0)
$3 + 4 + 8 - 2 + 5$
Dana Reigle, 4/23
Lewisburg, PA
19 (1.0)
$3 \times (4 + 2) \times 1 + 1$
Dana Reigle, 4/23
Lewisburg, PA
20 (2.4)
$(7 + 0 + 6 + 7) \times .\overline{9}$
Steve Wilson, 4/23
Lawrence, KS
  21 (1.0)
$8 \times 2 + 1 - 4 + 8$
Dana Reigle, 4/23
Lewisburg, PA
22 (1.0)
$0 - 8 + 6 \times 5 \times 1$
Steve Wilson, 4/23
Lawrence, KS
23 (1.0)
$(3 + 2) \times \dfrac82 + 3$
Dana Reigle, 4/23
Lewisburg, PA
24 (1.0)
$0 + 6 - 6 \times (4 - 7)$
Dana Reigle, 5/23
Lewisburg, PA
25 (1.0)
$0 + 9 \times 3 - \dfrac84$
Dana Reigle, 5/23
Lewisburg, PA
26 (1.2)
$-4 + 6 \times (0 \times 9 + 5)$
Dana Reigle, 5/23
Lewisburg, PA
27 (2.0)
$(5 + 0) \times 5.8 - 2$
Steve Wilson, 5/23
Lawrence, KS
28 (1.0)
$2 + (3 + 1) \times 7 - 2$
Dana Reigle, 5/23
Lewisburg, PA
29 (1.2)
$- 5 + 3 - 5 + 9 \times 4$
Dana Reigle, 5/23
Lewisburg, PA
30 (2.2)
$0 + 8 \times \dfrac{1 + 2}{.8}$
Steve Wilson, 5/23
Lawrence, KS
  31 (1.0)
$4 \times 8 - 1 \times 1 \times 1$
Steve Wilson, 5/23
Lawrence, KS
32 (1.0)
$(7 + 4 + 5) \times (0 + 2)$
Steve Wilson, 5/23
Lawrence, KS
33 (1.0)
$8 \times 4 + 1 + 0 \times 2$
Steve Wilson, 5/23
Lawrence, KS
34 (1.0)
$7 + 0 + 1 \times 9 \times 3$
Dana Reigle, 6/23
Lewisburg, PA
35 (2.0)
$8 \times (5 - 2) + 11$
Dana Reigle, 6/23
Lewisburg, PA
36 (1.0)
$0 + \left(5 - \dfrac55\right) \times 9$
Steve Wilson, 6/23
Lawrence, KS
37 (2.0)
$\dfrac{64 + 4 + 6}{2}$
Dana Reigle, 6/23
Lewisburg, PA
38 (1.0)
$2 - 9 \times 4 \times (8 - 9)$
Dana Reigle, 6/23
Lewisburg, PA
39 (2.0)
$(5 - 4) \times 9 + 30$
Dana Reigle, 6/23
Lewisburg, PA
40 (1.0)
$3 \times 8 + 1 + 9 + 6$
Steve Wilson, 6/23
Lawrence, KS
  41 (2.0)
$44 - 2 - \dfrac88$
Steve Wilson, 6/23
Lawrence, KS
42 (2.2)
$10 + \dfrac{9 + 7}{.5}$
Steve Wilson, 6/23
Lawrence, KS
43 (1.0)
$6 \times 6 - 5 + 9 + 3$
Steve Wilson, 6/23
Lawrence, KS
44 (2.0)
$34 + 4 + 6 \times 1$
Dana Reigle, 7/23
Lewisburg, PA
45 (1.2)
$(-2 + 8 - 4 + 7) \times 5$
Dana Reigle, 7/23
Lewisburg, PA
46 (1.2)
$-6 + 4 + 8 \times 2 \times 3$
Steve Wilson, 10/23
Lawrence, KS
47 (2.4)
$.\overline{3} \times (7 + 8) + 6 \times 7$
Steve Wilson, 7/23
Lawrence, KS
48 (1.0)
$8 \times 3 \times (1 + 6 - 5)$
Dana Reigle, 7/23
Lewisburg, PA
49 (2.2)
$-2 + 71 - 20$
Steve Wilson, 7/23
Lawrence, KS
50 (2.6)
$\dfrac{1 + 9}{.0\overline{9} + .1}$
Steve Wilson, 7/23
Lawrence, KS
  51 (2.0)
$45 - 6 + 4 + 8$
Steve Wilson, 7/23
Lawrence, KS
52 (1.0)
$5 + 6 \times 6 + 9 + 2$
Dana Reigle, 7/23
Lewisburg, PA
53 (3.2)
$3 + 46 + 0! + 3$
Steve Wilson, 9/23
Lawrence, KS
54 (2.0)
$48 + 6 + 1 \times 0$
Steve Wilson, 7/23
Lawrence, KS
55 (2.0)
$45 + 4 \times 3 - 2$
Dana Reigle, 8/23
Lewisburg, PA
56 (1.0)
$6 \times 6 + 4 + 8 \times 2$
Dana Reigle, 8/23
Lewisburg, PA
57 (1.0)
$(1 + 3 \times 3 + 9) \times 3$
Steve Wilson, 8/23
Lawrence, KS
58 (3.2)
$-6 + 0 \times 7 + 2^6$
Steve Wilson, 9/23
Lawrence, KS
59 (2.2)
$0 + \dfrac{2}{4\%} + 9 \times 1$
Steve Wilson, 8/23
Lawrence, KS
60 (1.0)
$(4 \times 1 + 2) \times (7 + 3)$
Steve Wilson, 8/23
Lawrence, KS
  61 (2.8)
$-.7 - 2 \times .4 + \dfrac{5}{8\%}$
Steve Wilson, 9/23
Lawrence, KS
62 (3.6)
$70 + 0! - \dfrac{6}{.\overline{6}}$
Steve Wilson, 10/23
Lawrence, KS
63 (3.0)
$0 + 63 \times 1^5$
Steve Wilson, 9/23
Lawrence, KS
64 (2.2)
$.5 \times (8 + 8) \times (1 + 7)$
Steve Wilson, 9/23
Lawrence, KS
65 (2.2)
$\left( 4 + \dfrac{8}{.8} - 1 \right) \times 5$
Steve Wilson, 10/23
Lawrence, KS
66 (3.4)
$(2 + 0!)! \times (9 + 2 + 0)$
Steve Wilson, 10/23
Lawrence, KS
67 (1.0)
$9 + 6 \times (2 + 8) - 2$
Dana Reigle, 8/23
Lewisburg, PA
68 (2.8)
$\left( .\overline{9} + .2 + .5 \right) \times 40$
Steve Wilson, 10/23
Lawrence, KS
69 (2.0)
$91 - 7 - 15$
Dana Reigle, 8/23
Lewisburg, PA
70 (2.0)
$3 + 64 - 3 + 6$
Dana Reigle, 8/23
Lewisburg, PA
  71 (2.0)
$7 + 89 - 25$
Dana Reigle, 10/23
Lewisburg, PA
72 (1.0)
$(9 + 0 + 3) \times (6 + 0)$
Steve Wilson, 11/23
Lawrence, KS
73 (3.2)
$0 + 1 + (1 + 3)! \times 3$
Dana Reigle, 10/23
Lewisburg, PA
74 (3.4)
$-0! + 5 \times 3 \times (0 + 5)$
Steve Wilson, 11/23
Lawrence, KS
75 (2.2)
$\dfrac{4 + 8}{8 \times 2\%} + 0$
Steve Wilson, 11/23
Lawrence, KS
76 (1.0)
$4 \times (6 + 6 + 5 + 2)$
Dana Reigle, 9/23
Lewisburg, PA
77 (3.2)
$(1 + 3!) \times (8 + 4 - 1)$
Dana Reigle, 10/23
Lewisburg, PA
78 (1.0)
$4 \times 6 + 9 \times (5 + 1)$
Steve Wilson, 11/23
Lawrence, KS
79 (2.0)
$94 - 15 \times 1$
Dana Reigle, 9/23
Lewisburg, PA
80 (2.0)
$16 \times (0 + 9 - 4)$
Dana Reigle, 10/23
Lewisburg, PA
  81 (3.0)
$(3 \times 3)^{0 - 5 + 7}$
Steve Wilson, 11/23
Lawrence, KS
82 (2.2)
$(2 \times 7 - 0.\overline{3}) \times 6$
Steve Wilson, 12/23
Lawrence, KS
83 (2.4)
$-5 \times 7 + \dfrac{59}{.5}$
Steve Wilson, 12/23
Lawrence, KS
84 (2.0)
$91 - 9 + 5 - 3$
Dana Reigle, 11/23
Lewisburg, PA
85 (2.0)
$0 + 92 + 1 - 8$
Dana Reigle, 11/23
Lewisburg, PA
86 (2.0)
$6 + 11 \times 7 + 3$
Steve Wilson, 12/23
Lawrence, KS
87 (1.0)
$(8 + 1) \times 9 + 3 \times 2$
Dana Reigle, 11/23
Lewisburg, PA
88 (3.6)
$6 + \sqrt{\dfrac{1}{.\overline{1}}} + 79$
Steve Wilson, 12/23
Lawrence, KS
89 (3.4)
$-31 + 0 + 5! \times 1$
Dana Reigle, 11/23
Lewisburg, PA
90 (1.0)
$(1 + 8) \times \dfrac{5}{4/8}$
Dana Reigle, 11/23
Lewisburg, PA
  91 (3.2)
$0! + (7 + 4 + 4) \times 6$
Steve Wilson, 12/23
Lawrence, KS
92 (2.0)
$(2 - 3) \times 7 + 99$
Dana Reigle, 12/23
Prague, Czech Republic
93 (3.2)
$62 + 7 \times 4 + \sqrt{9}$
Steve Wilson, 1/24
Lawrence, KS
94 (1.2)
$-5 - 6 + 7 \times 3 \times 5$
Dana Reigle, 12/23
Prague, Czech Republic
95 (3.2)
$-1^8 + 8 \times (5 + 7)$
Steve Wilson, 1/24
Lawrence, KS
96 (3.2)
$(5 + 2) \times 7 \times 2 - \sqrt{4}$
Steve Wilson, 1/24
Lawrence, KS
97 (3.2)
$8 + 91 - \sqrt{2 \times 2}$
Steve Wilson, 1/24
Lawrence, KS
98 (3.4)
$7 + \dfrac{\sqrt{9}}{.3} + 81$
Steve Wilson, 1/24
Lawrence, KS
99 (3.0)
$(8 + 3^0) \times 11$
Dana Reigle, 1/24
Lewisburg, PA
100 (2.0)
$94 + 9 - 1 - 2$
Dana Reigle, 12/23
Prague, Czech Republic
  101 (2.0)
$98 + 3 \times 3 - 6$
Steve Wilson, 2/24
Lawrence, KS
102 (2.0)
$7 + 33 + 62$
Steve Wilson, 2/24
Lawrence, KS
103 (2.2)
$\dfrac{4}{4\%} + 0.6 \times 5$
Steve Wilson, 3/24
Lawrence, KS
104 (2.2)
$\dfrac{6}{6\%} + 4 + 3 \times 0$
Steve Wilson, 2/24
Lawrence, KS
105 (3.4)
$86 - 0! + \dfrac{2}{.1}$
Steve Wilson, 2/24
Lawrence, KS
106 (2.4)
$3 \times .\overline{9} \times 4 + 94$
Steve Wilson, 6/24
Lawrence, KS
107 (1.2)
$(-6 + 3 \times 9) \times 5 + 2$
Dana Reigle, 2/24
Lewisburg, PA
108 (3.0)
$2^4 \times 7 + 3 - 7$
Dana Reigle, 1/24
Lewisburg, PA
109 (3.6)
$1 \times 9 + \dfrac{0!^7}{0!\%}$
Steve Wilson, 3/24
Lawrence, KS
110 (2.2)
$2 \times (-1 + 7) + 98$
Dana Reigle, 2/24
Lewisburg, PA
  111 (3.0)
$(6^0 + 9 \times 4) \times 3$
Dana Reigle, 2/24
Lewisburg, PA
112 (1.0)
$7 \times (0 + 2 + 7 + 7)$
Dana Reigle, 2/24
Lewisburg, PA
113 (3.2)
$0 + 5 + 3! \times 9 \times 2$
Steve Wilson, 6/24
Lawrence, KS
114 (2.0)
$1 + 7 \times 17 - 6$
Dana Reigle, 2/24
Lewisburg, PA
115 (3.2)
$2 \times 9 \times 3! + 1 \times 7$
Steve Wilson, 3/24
Lawrence, KS
116 (2.2)
$-6 + 7 + 5 \times 23$
Steve Wilson, 3/24
Lawrence, KS
117 (3.6)
$\dfrac{84}{.\overline{6}} - 7 - \sqrt{4}$
Steve Wilson, 4/24
Lawrence, KS
118 (2.0)
$(8 + 1) \times 8 + 46$
Dana Reigle, 3/24
Lewisburg, PA
119 (1.0)
$7 + (6 + 6) \times 9 + 4$
Dana Reigle, 3/24
Lewisburg, PA
120 (3.2)
$0 + 5! \times 1 \times (3 - 2)$
Steve Wilson, 4/24
Lawrence, KS
  121 (3.6)
$0! + 0 + \dfrac{(0! + 5)!}{6}$
Steve Wilson, 4/24
Lawrence, KS
122 (3.6)
$\sqrt{8 + 1} + (-2 + 7)! - 1$
Steve Wilson, 4/24
Lawrence, KS
123 (2.0)
$45 + 26 \times 3$
Steve Wilson, 4/24
Lawrence, KS
124 (3.2)
$(5 \times 6 + 0!) \times \dfrac82$
Dana Reigle, 4/24
Lewisburg, PA
125 (3.6)
$\dfrac{7}{7\pm \times \sqrt{8^{-5+7}} \phantom8}$
Steve Wilson, 5/24
Lawrence, KS
126 (2.0)
$7 \times (13 - 4) \times 2$
Dana Reigle, 4/24
Lewisburg, PA
127 (3.0)
$(7 - 5)^7 + 7 - 8$
Steve Wilson, 6/24
Lawrence, KS
128 (3.4)
$\left(\dfrac{\sqrt{9}}{6}\right)^{0! - 9 + 1}$
Steve Wilson, 5/24
Lawrence, KS
129 (2.0)
$73 + 63 - 7$
Dana Reigle, 4/24
Lewisburg, PA
130 (3.4)
$17 \times 8 - (\sqrt{7 + 2})!$
Steve Wilson, 5/24
Lawrence, KS
  131 (3.4)
$-1 - 4 + 68 \times \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
132 (3.8)
$4 \times (-0! + 9) + \dfrac{0!}{1\%}$
Steve Wilson, 5/24
Lawrence, KS
133 (2.0)
$22 \times 4 + 9 \times 5$
Dana Reigle, 5/24
Lewisburg, PA
134 (3.2)
$34 + \dfrac{3^0}{1\%}$
Steve Wilson, 6/24
Lawrence, KS
135 (1.0)
$(4 \times 6 - 5 - 4) \times 9$
Dana Reigle, 5/24
Lewisburg, PA
136 (3.2)
$(5 + 8) \times (5 + 3!) - 7$
Steve Wilson, 6/24
Lawrence, KS
137 (3.2)
$10 + 5! + 0 + 7$
Dana Reigle, 6/24
Lewisburg, PA
138 (3.4)
$9 \times (2 + 2 \times 7) - (\sqrt{9})!$
Steve Wilson, 7/24
Lawrence, KS
139 (3.4)
$6 + 8 + \sqrt{9} + 2 + 5!$
Dana Reigle, 6/24
Lewisburg, PA
140 (3.2)
$(8 - \sqrt{9} + 23) \times 5$
Dana Reigle, 6/24
Lewisburg, PA
  141 (3.4)
$\dfrac{4^2 - 0!}{.1} - 9$
Steve Wilson, 7/24
Lawrence, KS
142 (3.2)
$(9 - 5)! \times 6 - 1 - 1$
Steve Wilson, 7/24
Lawrence, KS
143 (3.6)
$2 \times 12 \times (\sqrt{9})! - 0!$
Steve Wilson, 7/24
Lawrence, KS
144 (3.2)
$(21 + \sqrt{9}) \times 6 + 0$
Steve Wilson, 7/24
Lawrence, KS
145 (3.6)
$\sqrt{\left(\dfrac{8}{.\overline{6}}\right)^4} + (0!)^3$
Steve Wilson, 8/24
Lawrence, KS
146 (3.8)
$\sqrt{4} + \sqrt{4} \times 1 \times \dfrac{8}{.\overline{1}}$
Steve Wilson, 8/24
Lawrence, KS
147 (3.4)
$\sqrt[.5]{\sqrt{9} + 8 + 1} + 3$
Steve Wilson, 8/24
Lawrence, KS
148 (2.0)
$62 + 9 + 77$
Dana Reigle, 7/24
Lewisburg, PA
149 (3.2)
$\sqrt{4} + 7 \times 7 \times 1 \times 3$
Dana Reigle, 7/24
Lewisburg, PA
150 (2.2)
$0 \times 9 + \dfrac{9}{6\%} + 0$
Steve Wilson, 8/24
Lawrence, KS
  151 (3.4)
$51 + \dfrac{8}{(7 + 0!)\%}$
Steve Wilson, 8/24
Lawrence, KS
152 (3.2)
$7^2 + \dfrac{1}{1\%} + 3$
Kevin Schwarz, 8/24
Olathe, KS
153 (3.2)
$(4 + 9 + \sqrt{9}) \times 9 + 9$
Kevin Schwarz, 8/24
Olathe, KS
154 (1.0)
$(9 + 9) \times 8 + 3 + 7$
Kevin Schwarz, 8/24
Olathe, KS
155 (3.6)
$2 \times .\overline{9} \times 78 - 0!$
Steve Wilson, 9/24
Lawrence, KS
156 (3.2)
$4! \times 9 - 9 - 51$
Kevin Schwarz, 8/24
Olathe, KS
157 (3.2)
$0! + (5 \times 9 + 7) \times 3$
Kevin Schwarz, 8/24
Olathe, KS
158 (3.2)
$1^7 + \dfrac{3}{2\%} + 8$
Steve Wilson, 9/24
Lawrence, KS
159 (3.4)
$160 - (.\overline{9})^6$
Steve Wilson, 9/24
Lawrence, KS
160 (2.4)
$(3 + 1) \times 8 \times 5 \times .\overline{9}$
Steve Wilson, 11/24
Lawrence, KS
  161 (3.4)
$5! - 0! - 2 + 44$
Dana Reigle, 8/24
Lewisburg, PA
162 (3.8)
$\left( -.5 + .9 + \sqrt{4^5}\right) \times 5$
Steve Wilson, 9/24
Lawrence, KS
163 (3.6)
$\sqrt{\sqrt{3^4}} \times 6 \times 9 + 0!$
Steve Wilson, 9/24
Lawrence, KS
164 (3.6)
$(83 - 0!) \times \sqrt{-2 + 6}$
Kevin Schwarz, 9/24
Olathe, KS
165 (3.8)
$42 + 5! + \sqrt{\dfrac{2}{.\overline{2}}}$
Steve Wilson, 10/24
Lawrence, KS
166 (3.4)
$\dfrac{(3 \times 0)! + 82}{.5}$
Kevin Schwarz, 9/24
Olathe, KS
167 (2.2)
$\dfrac{334}{-4 + 6}$
Kevin Schwarz, 9/24
Olathe, KS
168 (3.2)
$8 \times (5 + 0! + 3 \times 5)$
Dana Reigle, 10/24
Lewisburg, PA
169 (3.4)
$(2 \times 6 + 1)^{(\sqrt{9})!/3}$
Steve Wilson, 10/24
Lawrence, KS
170 (2.2)
$\dfrac{1}{.1} \times (8 + 8 + 1)$
Steve Wilson, 10/24
Lawrence, KS
  171 (3.4)
$71 + \dfrac{0!}{1.0\%}$
Dana Reigle, 9/24
Lewisburg, PA
172 (3.8)
$\dfrac{0!}{0!\%} + (3 + 1)! \times 3$
Steve Wilson, 10/24
Lawrence, KS
173 (2.2)
$\dfrac{78}{.3} - 87$
Steve Wilson, 11/24
Lawrence, KS
174 (3.8)
$\sqrt{5!^2} + \dfrac{8}{.\overline{8}} \times 6$
Steve Wilson, 10/24
Lawrence, KS
175 (3.4)
$\left(\left(5 \times \dfrac87\right)\pm\right)^{\phantom8 5 - 3!}$
Steve Wilson, 11/24
Lawrence, KS
176 (3.6)
$\dfrac{3!}{(2 + 0!)\%} - 8 \times 3$
Steve Wilson, 11/24
Lawrence, KS
177 (3.8)
$\dfrac{8}{.\overline{1} \times .4} - 2 - 0!$
Steve Wilson, 11/24
Lawrence, KS
61717 76691 47303
  59825 34904 28755 46873 11595 186 (2.0)
$6 \times 28 + 6 \times 3$
Kevin Schwarz, 10/24
Olathe, KS
187 (2.0)
$8 + 8 \times 23 - 5$
Kevin Schwarz, 10/24
Olathe, KS
37875 93751 95778

Page 1 (1-400).