\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \)
This Integermania problem is a bit different than the others, as different digits will be used to create each of the integers. In particular, the following two ADDITIONAL rules must be met:
Use the online submissions page to get your Integermania solutions posted here! Five "new" or "improved" solutions per person per month are accepted.
Page 1 (1-400).
0 (1.0) $0 + 0 + 0 + 0 \times 3.$ Steve Wilson, 3/23 Lawrence, KS |
||||||||||
1 (1.0) $\dfrac{1 \times 4 + 1 \times 5}{9}$ Steve Wilson, 3/23 Lawrence, KS |
2 (1.0) $\dfrac{2 \times 6 - 5 + 3}{5}$ Dana Reigle, 3/23 Lewisburg, PA |
3 (1.0) $(8 + 9 - 7 - 9) \times 3$ Dana Reigle, 3/23 Lewisburg, PA |
4 (1.0) $2 \times 3 + 8 - 4 - 6$ Dana Reigle, 3/23 Lewisburg, PA |
5 (1.0) $2 - (6 - 4 - 3) \times 3$ Dana Reigle, 3/23 Lewisburg, PA |
6 (1.0) $(8 + 3) \times 2 - 7 - 9$ Dana Reigle, 3/23 Lewisburg, PA |
7 (1.0) $5 + 0 + 2 + 8 - 8$ Steve Wilson, 3/23 Lawrence, KS |
8 (1.0) $4 + 1 + 9 - 7 + 1$ Steve Wilson, 3/23 Lawrence, KS |
9 (1.0) $6 + \dfrac93 + 9 - 9$ Steve Wilson, 3/23 Lawrence, KS |
10 (1.0) $(3 + 7) + (5 + 1) \times 0$ Jacob Heasley, 3/23 York, PA |
|
11 (1.0) $\dfrac{5 \times 8}{2} + 0 - 9$ Jacob Heasley, 3/23 York, PA |
12 (1.0) $7 + 4 + 9 - 4 - 4$ Jacob Heasley, 3/23 York, PA |
13 (1.0) $5 + 9 + 2 - 3 + 0$ Jacob Heasley, 3/23 York, PA |
14 (1.0) $\dfrac{7}{8 \times 1 - 6} \times 4$ Jacob Heasley, 3/23 York, PA |
15 (2.2) $0 + \dfrac{6}{.2 \times (8 - 6)}$ Steve Wilson, 4/23 Lawrence, KS |
16 (1.0) $(2 + 0) \times 8 + 9 - 9$ Dana Reigle, 4/23 Lewisburg, PA |
17 (2.4) $8 + \dfrac{6 + 2}{.\overline{8}} + 0$ Steve Wilson, 4/23 Lawrence, KS |
18 (1.0) $3 + 4 + 8 - 2 + 5$ Dana Reigle, 4/23 Lewisburg, PA |
19 (1.0) $3 \times (4 + 2) \times 1 + 1$ Dana Reigle, 4/23 Lewisburg, PA |
20 (2.4) $(7 + 0 + 6 + 7) \times .\overline{9}$ Steve Wilson, 4/23 Lawrence, KS |
|
21 (1.0) $8 \times 2 + 1 - 4 + 8$ Dana Reigle, 4/23 Lewisburg, PA |
22 (1.0) $0 - 8 + 6 \times 5 \times 1$ Steve Wilson, 4/23 Lawrence, KS |
23 (1.0) $(3 + 2) \times \dfrac82 + 3$ Dana Reigle, 4/23 Lewisburg, PA |
24 (1.0) $0 + 6 - 6 \times (4 - 7)$ Dana Reigle, 5/23 Lewisburg, PA |
25 (1.0) $0 + 9 \times 3 - \dfrac84$ Dana Reigle, 5/23 Lewisburg, PA |
26 (1.2) $-4 + 6 \times (0 \times 9 + 5)$ Dana Reigle, 5/23 Lewisburg, PA |
27 (2.0) $(5 + 0) \times 5.8 - 2$ Steve Wilson, 5/23 Lawrence, KS |
28 (1.0) $2 + (3 + 1) \times 7 - 2$ Dana Reigle, 5/23 Lewisburg, PA |
29 (1.2) $- 5 + 3 - 5 + 9 \times 4$ Dana Reigle, 5/23 Lewisburg, PA |
30 (2.2) $0 + 8 \times \dfrac{1 + 2}{.8}$ Steve Wilson, 5/23 Lawrence, KS |
|
31 (1.0) $4 \times 8 - 1 \times 1 \times 1$ Steve Wilson, 5/23 Lawrence, KS |
32 (1.0) $(7 + 4 + 5) \times (0 + 2)$ Steve Wilson, 5/23 Lawrence, KS |
33 (1.0) $8 \times 4 + 1 + 0 \times 2$ Steve Wilson, 5/23 Lawrence, KS |
34 (1.0) $7 + 0 + 1 \times 9 \times 3$ Dana Reigle, 6/23 Lewisburg, PA |
35 (2.0) $8 \times (5 - 2) + 11$ Dana Reigle, 6/23 Lewisburg, PA |
36 (1.0) $0 + \left(5 - \dfrac55\right) \times 9$ Steve Wilson, 6/23 Lawrence, KS |
37 (2.0) $\dfrac{64 + 4 + 6}{2}$ Dana Reigle, 6/23 Lewisburg, PA |
38 (1.0) $2 - 9 \times 4 \times (8 - 9)$ Dana Reigle, 6/23 Lewisburg, PA |
39 (2.0) $(5 - 4) \times 9 + 30$ Dana Reigle, 6/23 Lewisburg, PA |
40 (1.0) $3 \times 8 + 1 + 9 + 6$ Steve Wilson, 6/23 Lawrence, KS |
|
41 (2.0) $44 - 2 - \dfrac88$ Steve Wilson, 6/23 Lawrence, KS |
42 (2.2) $10 + \dfrac{9 + 7}{.5}$ Steve Wilson, 6/23 Lawrence, KS |
43 (1.0) $6 \times 6 - 5 + 9 + 3$ Steve Wilson, 6/23 Lawrence, KS |
44 (2.0) $34 + 4 + 6 \times 1$ Dana Reigle, 7/23 Lewisburg, PA |
45 (1.2) $(-2 + 8 - 4 + 7) \times 5$ Dana Reigle, 7/23 Lewisburg, PA |
46 (1.2) $-6 + 4 + 8 \times 2 \times 3$ Steve Wilson, 10/23 Lawrence, KS |
47 (2.4) $.\overline{3} \times (7 + 8) + 6 \times 7$ Steve Wilson, 7/23 Lawrence, KS |
48 (1.0) $8 \times 3 \times (1 + 6 - 5)$ Dana Reigle, 7/23 Lewisburg, PA |
49 (2.2) $-2 + 71 - 20$ Steve Wilson, 7/23 Lawrence, KS |
50 (2.6) $\dfrac{1 + 9}{.0\overline{9} + .1}$ Steve Wilson, 7/23 Lawrence, KS |
|
51 (2.0) $45 - 6 + 4 + 8$ Steve Wilson, 7/23 Lawrence, KS |
52 (1.0) $5 + 6 \times 6 + 9 + 2$ Dana Reigle, 7/23 Lewisburg, PA |
53 (3.2) $3 + 46 + 0! + 3$ Steve Wilson, 9/23 Lawrence, KS |
54 (2.0) $48 + 6 + 1 \times 0$ Steve Wilson, 7/23 Lawrence, KS |
55 (2.0) $45 + 4 \times 3 - 2$ Dana Reigle, 8/23 Lewisburg, PA |
56 (1.0) $6 \times 6 + 4 + 8 \times 2$ Dana Reigle, 8/23 Lewisburg, PA |
57 (1.0) $(1 + 3 \times 3 + 9) \times 3$ Steve Wilson, 8/23 Lawrence, KS |
58 (3.2) $-6 + 0 \times 7 + 2^6$ Steve Wilson, 9/23 Lawrence, KS |
59 (2.2) $0 + \dfrac{2}{4\%} + 9 \times 1$ Steve Wilson, 8/23 Lawrence, KS |
60 (1.0) $(4 \times 1 + 2) \times (7 + 3)$ Steve Wilson, 8/23 Lawrence, KS |
|
61 (2.8) $-.7 - 2 \times .4 + \dfrac{5}{8\%}$ Steve Wilson, 9/23 Lawrence, KS |
62 (3.6) $70 + 0! - \dfrac{6}{.\overline{6}}$ Steve Wilson, 10/23 Lawrence, KS |
63 (3.0) $0 + 63 \times 1^5$ Steve Wilson, 9/23 Lawrence, KS |
64 (2.2) $.5 \times (8 + 8) \times (1 + 7)$ Steve Wilson, 9/23 Lawrence, KS |
65 (2.2) $\left( 4 + \dfrac{8}{.8} - 1 \right) \times 5$ Steve Wilson, 10/23 Lawrence, KS |
66 (3.4) $(2 + 0!)! \times (9 + 2 + 0)$ Steve Wilson, 10/23 Lawrence, KS |
67 (1.0) $9 + 6 \times (2 + 8) - 2$ Dana Reigle, 8/23 Lewisburg, PA |
68 (2.8) $\left( .\overline{9} + .2 + .5 \right) \times 40$ Steve Wilson, 10/23 Lawrence, KS |
69 (2.0) $91 - 7 - 15$ Dana Reigle, 8/23 Lewisburg, PA |
70 (2.0) $3 + 64 - 3 + 6$ Dana Reigle, 8/23 Lewisburg, PA |
|
71 (2.0) $7 + 89 - 25$ Dana Reigle, 10/23 Lewisburg, PA |
72 (1.0) $(9 + 0 + 3) \times (6 + 0)$ Steve Wilson, 11/23 Lawrence, KS |
73 (3.2) $0 + 1 + (1 + 3)! \times 3$ Dana Reigle, 10/23 Lewisburg, PA |
74 (3.4) $-0! + 5 \times 3 \times (0 + 5)$ Steve Wilson, 11/23 Lawrence, KS |
75 (2.2) $\dfrac{4 + 8}{8 \times 2\%} + 0$ Steve Wilson, 11/23 Lawrence, KS |
76 (1.0) $4 \times (6 + 6 + 5 + 2)$ Dana Reigle, 9/23 Lewisburg, PA |
77 (3.2) $(1 + 3!) \times (8 + 4 - 1)$ Dana Reigle, 10/23 Lewisburg, PA |
78 (1.0) $4 \times 6 + 9 \times (5 + 1)$ Steve Wilson, 11/23 Lawrence, KS |
79 (2.0) $94 - 15 \times 1$ Dana Reigle, 9/23 Lewisburg, PA |
80 (2.0) $16 \times (0 + 9 - 4)$ Dana Reigle, 10/23 Lewisburg, PA |
|
81 (3.0) $(3 \times 3)^{0 - 5 + 7}$ Steve Wilson, 11/23 Lawrence, KS |
82 (2.2) $(2 \times 7 - 0.\overline{3}) \times 6$ Steve Wilson, 12/23 Lawrence, KS |
83 (2.4) $-5 \times 7 + \dfrac{59}{.5}$ Steve Wilson, 12/23 Lawrence, KS |
84 (2.0) $91 - 9 + 5 - 3$ Dana Reigle, 11/23 Lewisburg, PA |
85 (2.0) $0 + 92 + 1 - 8$ Dana Reigle, 11/23 Lewisburg, PA |
86 (2.0) $6 + 11 \times 7 + 3$ Steve Wilson, 12/23 Lawrence, KS |
87 (1.0) $(8 + 1) \times 9 + 3 \times 2$ Dana Reigle, 11/23 Lewisburg, PA |
88 (3.6) $6 + \sqrt{\dfrac{1}{.\overline{1}}} + 79$ Steve Wilson, 12/23 Lawrence, KS |
89 (3.4) $-31 + 0 + 5! \times 1$ Dana Reigle, 11/23 Lewisburg, PA |
90 (1.0) $(1 + 8) \times \dfrac{5}{4/8}$ Dana Reigle, 11/23 Lewisburg, PA |
|
91 (3.2) $0! + (7 + 4 + 4) \times 6$ Steve Wilson, 12/23 Lawrence, KS |
92 (2.0) $(2 - 3) \times 7 + 99$ Dana Reigle, 12/23 Prague, Czech Republic |
93 (3.2) $62 + 7 \times 4 + \sqrt{9}$ Steve Wilson, 1/24 Lawrence, KS |
94 (1.2) $-5 - 6 + 7 \times 3 \times 5$ Dana Reigle, 12/23 Prague, Czech Republic |
95 (3.2) $-1^8 + 8 \times (5 + 7)$ Steve Wilson, 1/24 Lawrence, KS |
96 (3.2) $(5 + 2) \times 7 \times 2 - \sqrt{4}$ Steve Wilson, 1/24 Lawrence, KS |
97 (3.2) $8 + 91 - \sqrt{2 \times 2}$ Steve Wilson, 1/24 Lawrence, KS |
98 (3.4) $7 + \dfrac{\sqrt{9}}{.3} + 81$ Steve Wilson, 1/24 Lawrence, KS |
99 (3.0) $(8 + 3^0) \times 11$ Dana Reigle, 1/24 Lewisburg, PA |
100 (2.0) $94 + 9 - 1 - 2$ Dana Reigle, 12/23 Prague, Czech Republic |
|
101 (2.0) $98 + 3 \times 3 - 6$ Steve Wilson, 2/24 Lawrence, KS |
102 (2.0) $7 + 33 + 62$ Steve Wilson, 2/24 Lawrence, KS |
103 (2.2) $\dfrac{4}{4\%} + 0.6 \times 5$ Steve Wilson, 3/24 Lawrence, KS |
104 (2.2) $\dfrac{6}{6\%} + 4 + 3 \times 0$ Steve Wilson, 2/24 Lawrence, KS |
105 (3.4) $86 - 0! + \dfrac{2}{.1}$ Steve Wilson, 2/24 Lawrence, KS |
106 (2.4) $3 \times .\overline{9} \times 4 + 94$ Steve Wilson, 6/24 Lawrence, KS |
107 (1.2) $(-6 + 3 \times 9) \times 5 + 2$ Dana Reigle, 2/24 Lewisburg, PA |
108 (3.0) $2^4 \times 7 + 3 - 7$ Dana Reigle, 1/24 Lewisburg, PA |
109 (3.6) $1 \times 9 + \dfrac{0!^7}{0!\%}$ Steve Wilson, 3/24 Lawrence, KS |
110 (2.2) $2 \times (-1 + 7) + 98$ Dana Reigle, 2/24 Lewisburg, PA |
|
111 (3.0) $(6^0 + 9 \times 4) \times 3$ Dana Reigle, 2/24 Lewisburg, PA |
112 (1.0) $7 \times (0 + 2 + 7 + 7)$ Dana Reigle, 2/24 Lewisburg, PA |
113 (3.2) $0 + 5 + 3! \times 9 \times 2$ Steve Wilson, 6/24 Lawrence, KS |
114 (2.0) $1 + 7 \times 17 - 6$ Dana Reigle, 2/24 Lewisburg, PA |
115 (3.2) $2 \times 9 \times 3! + 1 \times 7$ Steve Wilson, 3/24 Lawrence, KS |
116 (2.2) $-6 + 7 + 5 \times 23$ Steve Wilson, 3/24 Lawrence, KS |
117 (3.6) $\dfrac{84}{.\overline{6}} - 7 - \sqrt{4}$ Steve Wilson, 4/24 Lawrence, KS |
118 (2.0) $(8 + 1) \times 8 + 46$ Dana Reigle, 3/24 Lewisburg, PA |
119 (1.0) $7 + (6 + 6) \times 9 + 4$ Dana Reigle, 3/24 Lewisburg, PA |
120 (3.2) $0 + 5! \times 1 \times (3 - 2)$ Steve Wilson, 4/24 Lawrence, KS |
|
121 (3.6) $0! + 0 + \dfrac{(0! + 5)!}{6}$ Steve Wilson, 4/24 Lawrence, KS |
122 (3.6) $\sqrt{8 + 1} + (-2 + 7)! - 1$ Steve Wilson, 4/24 Lawrence, KS |
123 (2.0) $45 + 26 \times 3$ Steve Wilson, 4/24 Lawrence, KS |
124 (3.2) $(5 \times 6 + 0!) \times \dfrac82$ Dana Reigle, 4/24 Lewisburg, PA |
125 (3.6) $\dfrac{7}{7\pm \times \sqrt{8^{-5+7}} \phantom8}$ Steve Wilson, 5/24 Lawrence, KS |
126 (2.0) $7 \times (13 - 4) \times 2$ Dana Reigle, 4/24 Lewisburg, PA |
127 (3.0) $(7 - 5)^7 + 7 - 8$ Steve Wilson, 6/24 Lawrence, KS |
128 (3.4) $\left(\dfrac{\sqrt{9}}{6}\right)^{0! - 9 + 1}$ Steve Wilson, 5/24 Lawrence, KS |
129 (2.0) $73 + 63 - 7$ Dana Reigle, 4/24 Lewisburg, PA |
130 (3.4) $17 \times 8 - (\sqrt{7 + 2})!$ Steve Wilson, 5/24 Lawrence, KS |
|
131 (3.4) $-1 - 4 + 68 \times \sqrt{4}$ Steve Wilson, 5/24 Lawrence, KS |
132 (3.8) $4 \times (-0! + 9) + \dfrac{0!}{1\%}$ Steve Wilson, 5/24 Lawrence, KS |
133 (2.0) $22 \times 4 + 9 \times 5$ Dana Reigle, 5/24 Lewisburg, PA |
134 (3.2) $34 + \dfrac{3^0}{1\%}$ Steve Wilson, 6/24 Lawrence, KS |
135 (1.0) $(4 \times 6 - 5 - 4) \times 9$ Dana Reigle, 5/24 Lewisburg, PA |
136 (3.2) $(5 + 8) \times (5 + 3!) - 7$ Steve Wilson, 6/24 Lawrence, KS |
137 (3.2) $10 + 5! + 0 + 7$ Dana Reigle, 6/24 Lewisburg, PA |
138 (3.4) $9 \times (2 + 2 \times 7) - (\sqrt{9})!$ Steve Wilson, 7/24 Lawrence, KS |
139 (3.4) $6 + 8 + \sqrt{9} + 2 + 5!$ Dana Reigle, 6/24 Lewisburg, PA |
140 (3.2) $(8 - \sqrt{9} + 23) \times 5$ Dana Reigle, 6/24 Lewisburg, PA |
|
141 (3.4) $\dfrac{4^2 - 0!}{.1} - 9$ Steve Wilson, 7/24 Lawrence, KS |
142 (3.2) $(9 - 5)! \times 6 - 1 - 1$ Steve Wilson, 7/24 Lawrence, KS |
143 (3.6) $2 \times 12 \times (\sqrt{9})! - 0!$ Steve Wilson, 7/24 Lawrence, KS |
144 (3.2) $(21 + \sqrt{9}) \times 6 + 0$ Steve Wilson, 7/24 Lawrence, KS |
145 (3.6) $\sqrt{\left(\dfrac{8}{.\overline{6}}\right)^4} + (0!)^3$ Steve Wilson, 8/24 Lawrence, KS |
146 (3.8) $\sqrt{4} + \sqrt{4} \times 1 \times \dfrac{8}{.\overline{1}}$ Steve Wilson, 8/24 Lawrence, KS |
147 (3.4) $\sqrt[.5]{\sqrt{9} + 8 + 1} + 3$ Steve Wilson, 8/24 Lawrence, KS |
148 (2.0) $62 + 9 + 77$ Dana Reigle, 7/24 Lewisburg, PA |
149 (3.2) $\sqrt{4} + 7 \times 7 \times 1 \times 3$ Dana Reigle, 7/24 Lewisburg, PA |
150 (2.2) $0 \times 9 + \dfrac{9}{6\%} + 0$ Steve Wilson, 8/24 Lawrence, KS |
|
151 (3.4) $51 + \dfrac{8}{(7 + 0!)\%}$ Steve Wilson, 8/24 Lawrence, KS |
152 (3.2) $7^2 + \dfrac{1}{1\%} + 3$ Kevin Schwarz, 8/24 Olathe, KS |
153 (3.2) $(4 + 9 + \sqrt{9}) \times 9 + 9$ Kevin Schwarz, 8/24 Olathe, KS |
154 (1.0) $(9 + 9) \times 8 + 3 + 7$ Kevin Schwarz, 8/24 Olathe, KS |
155 (3.6) $2 \times .\overline{9} \times 78 - 0!$ Steve Wilson, 9/24 Lawrence, KS |
156 (3.2) $4! \times 9 - 9 - 51$ Kevin Schwarz, 8/24 Olathe, KS |
157 (3.2) $0! + (5 \times 9 + 7) \times 3$ Kevin Schwarz, 8/24 Olathe, KS |
158 (3.2) $1^7 + \dfrac{3}{2\%} + 8$ Steve Wilson, 9/24 Lawrence, KS |
159 (3.4) $160 - (.\overline{9})^6$ Steve Wilson, 9/24 Lawrence, KS |
160 (2.4) $(3 + 1) \times 8 \times 5 \times .\overline{9}$ Steve Wilson, 11/24 Lawrence, KS |
|
161 (3.4) $5! - 0! - 2 + 44$ Dana Reigle, 8/24 Lewisburg, PA |
162 (3.8) $\left( -.5 + .9 + \sqrt{4^5}\right) \times 5$ Steve Wilson, 9/24 Lawrence, KS |
163 (3.6) $\sqrt{\sqrt{3^4}} \times 6 \times 9 + 0!$ Steve Wilson, 9/24 Lawrence, KS |
164 (3.6) $(83 - 0!) \times \sqrt{-2 + 6}$ Kevin Schwarz, 9/24 Olathe, KS |
165 (3.8) $42 + 5! + \sqrt{\dfrac{2}{.\overline{2}}}$ Steve Wilson, 10/24 Lawrence, KS |
166 (3.4) $\dfrac{(3 \times 0)! + 82}{.5}$ Kevin Schwarz, 9/24 Olathe, KS |
167 (2.2) $\dfrac{334}{-4 + 6}$ Kevin Schwarz, 9/24 Olathe, KS |
168 (3.2) $8 \times (5 + 0! + 3 \times 5)$ Dana Reigle, 10/24 Lewisburg, PA |
169 (3.4) $(2 \times 6 + 1)^{(\sqrt{9})!/3}$ Steve Wilson, 10/24 Lawrence, KS |
170 (2.2) $\dfrac{1}{.1} \times (8 + 8 + 1)$ Steve Wilson, 10/24 Lawrence, KS |
|
171 (3.4) $71 + \dfrac{0!}{1.0\%}$ Dana Reigle, 9/24 Lewisburg, PA |
172 (3.8) $\dfrac{0!}{0!\%} + (3 + 1)! \times 3$ Steve Wilson, 10/24 Lawrence, KS |
173 (2.2) $\dfrac{78}{.3} - 87$ Steve Wilson, 11/24 Lawrence, KS |
174 (3.8) $\sqrt{5!^2} + \dfrac{8}{.\overline{8}} \times 6$ Steve Wilson, 10/24 Lawrence, KS |
175 (3.4) $\left(\left(5 \times \dfrac87\right)\pm\right)^{\phantom8 5 - 3!}$ Steve Wilson, 11/24 Lawrence, KS |
176 (3.6) $\dfrac{3!}{(2 + 0!)\%} - 8 \times 3$ Steve Wilson, 11/24 Lawrence, KS |
177 (3.8) $\dfrac{8}{.\overline{1} \times .4} - 2 - 0!$ Steve Wilson, 11/24 Lawrence, KS |
61717 | 76691 | 47303 | |
59825 | 34904 | 28755 | 46873 | 11595 | 186 (2.0) $6 \times 28 + 6 \times 3$ Kevin Schwarz, 10/24 Olathe, KS |
187 (2.0) $8 + 8 \times 23 - 5$ Kevin Schwarz, 10/24 Olathe, KS |
37875 | 93751 | 95778 |
Page 1 (1-400).