\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \)
The first four natural numbers are 1, 2, 3, and 4. Create each of the positive integers using one copy of each number, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.
Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.
Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201-1600), Page 5 (1601+)
801 (2.2) $\dfrac{24}{3\%} + 1$ Paolo Pellegrini, 10/11 Martina Franca, Italy |
802 (2.8) $\dfrac{4 + 1\%}{(.2 + .3)\%}$ Paolo Pellegrini, 10/11 Martina Franca, Italy |
803 (2.2) $4 \times \dfrac{2}{1\%} + 3$ Paolo Pellegrini, 10/11 Martina Franca, Italy |
804 (3.4) $\dfrac{1}{2^{-3}\%} + 4$ Paolo Pellegrini, 10/11 Martina Franca, Italy |
805 (3.6) $\dfrac{4!}{3\%} + \dfrac{1}{.2}$ Paolo Pellegrini, 12/11 Martina Franca, Italy |
806 (2.2) $2 \times \left( \dfrac{4}{1\%} + 3 \right)$ Paolo Pellegrini, 10/11 Martina Franca, Italy |
807 (3.6) $\dfrac{4! + 21\%}{3\%}$ Steve Wilson, 2/12 Raytown, MO |
808 (3.2) $\dfrac{3^4}{.1} - 2$ Paolo Pellegrini, 12/11 Martina Franca, Italy |
809 (4.0) $.\overline{1}\%^{-2} \pm - 4 + 3$ Steve Wilson, 6/12 Raytown, MO |
810 (2.6) $1.2 \times \dfrac{3}{.\overline{4}\%}$ Steve Wilson, 12/11 Raytown, MO |
|
811 (4.0) $.\overline{1}\%^{-2} \pm + 4 - 3$ Steve Wilson, 6/12 Raytown, MO |
812 (2.2) $4 \times \left( \dfrac{2}{1\%} + 3 \right)$ Paolo Pellegrini, 12/11 Martina Franca, Italy |
813 (3.8) $.\overline{1}\%^{2-4} \pm + 3$ Steve Wilson, 6/12 Raytown, MO |
814 (4.4) $.\overline{1}\%^{-2} \pm + 3! - \sqrt{4}$ Steve Wilson, 6/12 Raytown, MO |
815 (4.2) $.\overline{1}\%^{-2} \pm + 3 + \sqrt{4}$ Steve Wilson, 6/12 Raytown, MO |
816 (3.6) $(1 + 2\%) \times \dfrac{4!}{3\%}$ Paolo Pellegrini, 12/11 Martina Franca, Italy |
817 (4.0) $.\overline{1}\%^{-2} \pm + 3 + 4$ Paolo Pellegrini, 5/12 Martina Franca, Italy |
818 (3.8) $\dfrac{4!}{3\%} + \dfrac{2}{.\overline{1}}$ Steve Wilson, 2/12 Raytown, MO |
819 (3.4) $\left( 4^{3!} - 1 \right) \times .2$ Paolo Pellegrini, 2/12 Martina Franca, Italy |
820 (2.2) $\dfrac{41}{(2 + 3)\%}$ Steve Wilson, 12/11 Raytown, MO |
|
821 (3.4) $\dfrac{4!}{3\%} + 21$ Steve Wilson, 2/12 Raytown, MO |
822 (4.0) $.1^{-2} + (3!)! + \sqrt{4}$ Paolo Pellegrini, 5/12 Martina Franca, Italy |
823 (5.2) $(3!)! + \dfrac{\sqrt{4}}{2\%} - \log(1 \pm)$ Steve Wilson, 10/12 Raytown, MO |
824 (3.4) $\left( \dfrac{2}{1\%} + 3! \right) \times 4$ Paolo Pellegrini, 2/12 Martina Franca, Italy |
825 (2.2) $\dfrac{31 + 2}{4\%}$ Paolo Pellegrini, 1/12 Martina Franca, Italy |
826 (2.0) $413 \times 2$ Shawn Graf, 12/06 Overland Park, KS |
827 (3.2) $\dfrac{2 \times .\overline{4} + 3\%}{.\overline{1}\%}$ Paolo Pellegrini, 1/12 Martina Franca, Italy |
828 (2.4) $23 \times \dfrac{4}{.\overline{1}}$ Paolo Pellegrini, 1/12 Martina Franca, Italy |
829 (4.0) $\sqrt{ \sqrt{ 3^{4!}}} + .1^{-2}$ Paolo Pellegrini, 5/12 Martina Franca, Italy |
830 (2.4) $\dfrac{2 \times 4 + .3}{1\%}$ Steve Wilson, 1/12 Raytown, MO |
|
831 (3.8) $\dfrac{3}{4 \pmf} + .\overline{1}^{-2}$ Paolo Pellegrini, 5/12 Martina Franca, Italy |
832 (3.6) $13 \times \sqrt{ \sqrt{ 2^{4!}}}$ Steve Wilson, 4/12 Raytown, MO |
833 (3.4) $\dfrac{4 + 1 - 2 \pmf}{3! \pmf}$ Paolo Pellegrini, 2/12 Martina Franca, Italy |
834 (2.4) $\dfrac{ \dfrac{1}{4\%\%} + 2}{3}$ Paolo Pellegrini, 1/12 Martina Franca, Italy |
835 (2.8) $\dfrac{1 + .2\%}{3 \times 4\%\%}$ Paolo Pellegrini, 1/12 Martina Franca, Italy |
836 (3.8) $(3!)! + \left( \dfrac{1}{.2} \right)! - 4$ Paolo Pellegrini, 6/12 Martina Franca, Italy |
837 (4.4) $\dfrac{ \dfrac{\sqrt{4\%}}{.\overline{2}\%} + 3}{.\overline{1}}$ Steve Wilson, 7/12 Raytown, MO |
838 (3.6) $(3!)! + (4 + 1)! - 2$ Steve Wilson, 5/12 Raytown, MO |
839 (3.8) $(3!)! + \left( \dfrac{2}{.4} \right)! - 1$ Paolo Pellegrini, 6/12 Martina Franca, Italy |
840 (2.6) $\dfrac{ \dfrac{1}{.4\%} + 2}{.3}$ Steve Wilson, 1/12 Raytown, MO |
|
841 (3.2) $\sqrt{(31 - 2)^4}$ Paolo Pellegrini, 2/12 Martina Franca, Italy |
842 (3.6) $(3!)! + (4 + 1)! + 2$ Steve Wilson, 5/12 Raytown, MO |
843 (5.2) $(3!)! + (4 + 1)! + \coth \ln \sqrt{2}$ Steve Wilson, 10/12 Raytown, MO |
844 (3.4) $(3!)! + 124$ Paolo Pellegrini, 2/12 Martina Franca, Italy |
845 (3.4) $\dfrac{13^2}{\sqrt{4\%}}$ Paolo Pellegrini, 6/12 Martina Franca, Italy |
846 (3.8) $(3!)^4 - \dfrac{1}{.\overline{2}\%}$ Paolo Pellegrini, 6/12 Martina Franca, Italy |
847 (4.8) $(4 + 3) \times ((\cot \arctan .2)! + 1)$ Steve Wilson, 11/12 Raytown, MO |
848 (3.4) $\left( \dfrac{1}{3\%} + 2 \right) \times 4!$ Paolo Pellegrini, 6/12 Martina Franca, Italy |
849 (3.6) $\dfrac{2 - .3}{\sqrt{4} \pmf} - 1$ Steve Wilson, 8/12 Raytown, MO |
850 (2.2) $\dfrac{13 + 4}{2\%}$ Steve Wilson, 1/12 Raytown, MO |
|
851 (3.6) $\dfrac{2 - .3}{\sqrt{4} \pmf} + 1$ Paolo Pellegrini, 7/12 Martina Franca, Italy |
852 (2.0) $213 \times 4$ Tina Redlinger, 9/07 Olathe, KS |
853 (4.0) $.\overline{1} \% ^{-2} \pm + 43$ Paolo Pellegrini, 7/12 Martina Franca, Italy |
854 (3.2) $(.\overline{4} + 3\%) \times \dfrac{2}{.\overline{1}\%}$ Paolo Pellegrini, 3/12 Martina Franca, Italy |
855 (2.8) $\dfrac{3 + 1 - .2}{.\overline{4}\%}$ Steve Wilson, 1/12 Raytown, MO |
856 (4.0) $1 \pm ^{-2} \pm - 3! \times 4!$ Paolo Pellegrini, 7/12 Martina Franca, Italy |
857 (4.0) $\sqrt{ .\overline{1}\% ^{-2}} - 43$ Paolo Pellegrini, 7/12 Martina Franca, Italy |
858 (3.8) $\dfrac{3}{\sqrt{.\overline{1}} \%} - 42$ Paolo Pellegrini, 7/12 Martina Franca, Italy |
859 (4.0) $(.\overline{3}\%)^{-2} \% - 41$ Paolo Pellegrini, 10/12 Martina Franca, Italy |
860 (2.2) $43 \times \dfrac{2}{.1}$ Carolyn Neptune, 8/11 Prairie Village, KS |
|
861 (4.8) $3!^2 \times 4! + \log(1 \pm)$ Steve Wilson, 11/12 Raytown, MO |
862 (2.0) $431 \times 2$ Jay Roath, 3/06 Overland Park, KS |
863 (3.4) $3!^2 \times 4! - 1$ Paolo Pellegrini, 10/12 Martina Franca, Italy |
864 (2.8) $\dfrac{3 - 2 - 4\%}{.\overline{1}\%}$ Steve Wilson, 1/12 Raytown, MO |
865 (3.4) $3!^2 \times 4! + 1$ Paolo Pellegrini, 10/12 Martina Franca, Italy |
866 (3.6) $(3!)! \times 1.2 + \sqrt{4}$ Steve Wilson, 8/12 Raytown, MO |
867 (4.8) $3!^2 \times 4! - \log(1 \pm)$ Steve Wilson, 11/12 Raytown, MO |
868 (3.4) $(3!)! \times 1.2 + 4$ Steve Wilson, 8/12 Raytown, MO |
869 (3.6) $\dfrac{21}{4! \pmf} - 3!$ Steve Wilson, 9/12 Raytown, MO |
870 (3.8) $\dfrac{(3!)! - 4!}{1 - .2}$ Steve Wilson, 8/23 Lawrence, KS |
|
871 (5.2) $3!^2 \times 4! - \log(1\%\%\pm)$ Steve Wilson, 11/12 Raytown, MO |
872 (3.4) $\dfrac{21}{4! \pmf} - 3$ Paolo Pellegrini, 8/12 Martina Franca, Italy |
873 (3.8) $\dfrac{ \dfrac{2}{\sqrt{4}\%} - 3}{.\overline{1}}$ Paolo Pellegrini, 8/12 Martina Franca, Italy |
874 (3.6) $\sqrt[.1]{2} - \dfrac{3}{(\sqrt{4})\%}$ Paolo Pellegrini, 8/12 Martina Franca, Italy |
875 (2.4) $\dfrac{3 + \dfrac12}{.4\%}$ Steve Wilson, 3/12 Raytown, MO |
876 (3.4) $4!^2 + \dfrac{3}{1\%}$ Steve Wilson, 8/12 Raytown, MO |
877 (4.2) $(.\overline{3}\%)^{-2}\% - 4! + 1$ Steve Wilson, 11/12 Raytown, MO |
878 (3.4) $\dfrac{21}{4! \pmf} + 3$ Paolo Pellegrini, 8/12 Martina Franca, Italy |
879 (4.2) $\left(\sqrt{(.\overline{3}\%)^{-4}}\right)\% - 21$ Steve Wilson, 11/12 Raytown, MO |
880 (3.0) $\dfrac{4}{(.\overline{12} + .\overline{3})\%}$ Paolo Pellegrini, 3/12 Martina Franca, Italy |
|
881 (3.6) $\dfrac{21}{4! \pmf} + 3!$ Paolo Pellegrini, 8/12 Martina Franca, Italy |
882 (2.8) $\dfrac{3 - 1 - 4\%}{.\overline{2}\%}$ Steve Wilson, 3/12 Raytown, MO |
883 (5.2) $\ln\sqrt{\exp \left( \dfrac{2}{.\overline{1}\%} - 34 \right)}$ Steve Wilson, 8/23 Lawrence, KS |
884 (3.6) $(3!)! \times 1.\overline{2} + 4$ Steve Wilson, 10/12 Raytown, MO |
885 (3.6) $(.\overline{1} + 2\%) \times \dfrac{.3}{.\overline{4}\%\%}$ Paolo Pellegrini, 10/12 Martina Franca, Italy |
886 (4.0) $(.\overline{3}\%)^{-2} \% - 14$ Paolo Pellegrini, 10/12 Martina Franca, Italy |
887 (3.8) $\dfrac{\sqrt{4}}{.\overline{2}\%} - 13$ Steve Wilson, 9/12 Raytown, MO |
888 (2.8) $\dfrac{2 + 1 - 4\%}{.\overline{3}\%}$ Steve Wilson, 3/12 Raytown, MO |
889 (3.2) $\dfrac{.\overline{4}}{(2 + 3)\%\%} + .\overline{1}$ Paolo Pellegrini, 11/12 Martina Franca, Italy |
890 (3.8) $\dfrac{ \dfrac{1}{4\%\%} - (3!)!}{2}$ Paolo Pellegrini, 11/12 Martina Franca, Italy |
|
891 (4.0) $(.\overline{1}\%)^{-2} \pm + 3^4$ Paolo Pellegrini, 11/12 Martina Franca, Italy |
892 (3.8) $\dfrac{3}{\left(\sqrt{.\overline{1}}\right)\%} - 4 \times 2$ Steve Wilson, 8/23 Lawrence, KS |
893 (4.0) $\dfrac{\sqrt{4}}{.\overline{2}\%} - 3! - 1$ Steve Wilson, 9/12 Raytown, MO |
894 (2.8) $\dfrac{4 - 1 - 2\%}{.\overline{3}\%}$ Steve Wilson, 3/12 Raytown, MO |
895 (3.6) $\dfrac{(3!)! - 4}{1 - .2}$ Paolo Pellegrini, 11/12 Martina Franca, Italy |
896 (2.6) $\dfrac{2 + 1}{.\overline{3}\%} - 4$ Steve Wilson, 8/12 Raytown, MO |
897 (3.8) $\dfrac{\sqrt{4}}{.\overline{2}\%} - 3 \times 1$ Steve Wilson, 9/12 Raytown, MO |
898 (2.6) $\dfrac{3 + 1}{.\overline{4}\%} - 2$ Paolo Pellegrini, 3/12 Martina Franca, Italy |
899 (3.4) $(4! + 3!)^2 - 1$ Ben Kerkhoff, 7/12 Lawrence, KS |
900 (2.2) $12 \times \dfrac{3}{4\%}$ Brett Wolverton, 10/10 Overland Park, KS |
|
901 (3.4) $(4! + 3!)^2 + 1$ Ben Kerkhoff, 7/12 Lawrence, KS |
902 (2.6) $\dfrac{3 + 1}{.\overline{4}\%} + 2$ Paolo Pellegrini, 3/12 Martina Franca, Italy |
903 (2.0) $21 \times 43$ Dave Jones, 10/07 Coventry, England |
904 (2.6) $\dfrac{2 + 1}{.\overline{3}\%} + 4$ Paolo Pellegrini, 3/12 Martina Franca, Italy |
905 (3.6) $\dfrac{(3!)! + 4}{1 - .2}$ Steve Wilson, 8/23 Lawrence, KS |
906 (2.8) $\dfrac{4 - 1 + 2\%}{.\overline{3}\%}$ Steve Wilson, 12/12 Raytown, MO |
907 (4.0) $\sqrt{ (.\overline{1}\%)^{-2}} + 4 + 3$ Steve Wilson, 8/23 Lawrence, KS |
908 (3.8) $\dfrac{3}{\left(\sqrt{.\overline{1}}\right)\%} + 4 \times 2$ Steve Wilson, 8/23 Lawrence, KS |
909 (4.2) $\sqrt{ (.\overline{1}\%)^{-2}} + \sqrt{3^4}$ Steve Wilson, 8/23 Lawrence, KS |
910 (4.2) $\sqrt{ (.\overline{1}\%)^{-2}} + 3! + 4$ Steve Wilson, 8/23 Lawrence, KS |
|
911 (4.2) $(.\overline{2}\%)^{-3}\%\pm - \dfrac14$ Steve Wilson, 8/23 Lawrence, KS |
912 (2.8) $\dfrac{2 + 1 + 4\%}{.\overline{3}\%}$ Steve Wilson, 12/12 Raytown, MO |
913 (3.8) $\dfrac{\sqrt{4}}{.\overline{2}\%} + 13$ Steve Wilson, 8/23 Lawrence, KS |
914 (4.0) $(.\overline{3}\%)^{-2}\% + 14$ Steve Wilson, 8/23 Lawrence, KS |
915 (3.8) $(3!)! + \dfrac{4 - .1}{2\%}$ Steve Wilson, 8/23 Lawrence, KS |
916 (3.8) $\dfrac{3}{\left(\sqrt{.\overline{1}}\right)\%} + 4^2$ Steve Wilson, 8/23 Lawrence, KS |
918 (2.8) $\dfrac{4 - 3 + 2\%}{.\overline{1}\%}$ Steve Wilson, 12/12 Raytown, MO |
919 (3.6) $(3!)! + \dfrac{4}{2\%} - 1$ Steve Wilson, 8/23 Lawrence, KS |
920 (2.2) $2.3 \times \dfrac{4}{1\%}$ Steve Wilson, 12/12 Raytown, MO |
||
921 (3.6) $(3!)! + \dfrac{4}{2\%} + 1$ Steve Wilson, 8/23 Lawrence, KS |
924 (2.0) $231 \times 4$ Tina Redlinger, 10/07 Olathe, KS |
925 (3.6) $(3!)! + \dfrac{4.1}{2\%}$ Steve Wilson, 8/23 Lawrence, KS |
928 (3.8) $(1\pm^{-2})\pm + 4! \times 3$ Steve Wilson, 8/23 Lawrence, KS |
929 (3.8) $(.\overline{1})^{-3} + \dfrac{4}{2\%}$ Steve Wilson, 8/23 Lawrence, KS |
930 (3.8) $\dfrac{(3!)! + 4!}{1 - .2}$ Steve Wilson, 8/23 Lawrence, KS |
|||||
931 (3.8) $\dfrac{\sqrt{4}}{.\overline{2}\%} + 31$ Steve Wilson, 8/23 Lawrence, KS |
934 (4.0) $\sqrt{ (.\overline{1}\%)^{-2}} + 34$ Steve Wilson, 8/23 Lawrence, KS |
936 (2.8) $\dfrac{3 - 2 + 4\%}{.\overline{1}\%}$ Steve Wilson, 12/12 Raytown, MO |
937 (3.2) $31^2 - 4!$ Shannon O'Neill, 6/12 Lawrence, KS |
940 (3.4) $\dfrac{3^2 + .4}{1\%}$ Steve Wilson, 8/23 Lawrence, KS |
||||||
941 (4.0) $(.\overline{3}\%)^{-2}\% + 41$ Steve Wilson, 8/23 Lawrence, KS |
942 (3.8) $\dfrac{3}{\left(\sqrt{.\overline{1}}\right)\%} + 42$ Steve Wilson, 8/23 Lawrence, KS |
943 (2.0) $41 \times 23$ Tina Redlinger, 10/07 Olathe, KS |
945 (2.6) $\dfrac{3 + 1.2}{.\overline{4}\%}$ Steve Wilson, 12/12 Raytown, MO |
949 (3.4) $\sqrt[.1]{2} - \dfrac{3}{4\%}$ Steve Wilson, 8/23 Lawrence, KS |
950 (2.4) $\dfrac{2 + \dfrac{3}{.4} }{1\%}$ Steve Wilson, 12/12 Raytown, MO |
|||||
952 (3.4) $\sqrt[.1]{2} - 4! \times 3$ Steve Wilson, 8/23 Lawrence, KS |
957 (3.0) $31^2 - 4$ John Hepfer, 9/07 Shawnee, KS |
958 (3.4) $.1^{-3} - 42$ Steve Wilson, 8/23 Lawrence, KS |
959 (3.2) $\sqrt{31^4} - 2$ John Hepfer, 8/07 Shawnee, KS |
960 (2.6) $\dfrac{3 - 2 - 4\%}{.1\%}$ Steve Wilson, 12/12 Raytown, MO |
||||||
961 (3.0) $31^{4-2}$ Steve Wilson, 8/23 Lawrence, KS |
963 (3.2) $\sqrt{31^4} + 2$ John Hepfer, 8/07 Shawnee, KS |
964 (3.6) $\sqrt[.2]{4} - \dfrac{3!}{.1}$ Steve Wilson, 8/23 Lawrence, KS |
965 (3.0) $31^2 + 4$ John Hepfer, 9/07 Shawnee, KS |
968 (3.8) $(1\%^{-4})\%\pm - 32$ Steve Wilson, 8/23 Lawrence, KS |
969 (3.4) $\dfrac{\sqrt{4}}{2\pmf} - 31$ Steve Wilson, 8/23 Lawrence, KS |
970 (3.6) $\dfrac{ \dfrac{2}{\sqrt{4}} - 3\%}{1\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
||||
971 (3.8) $\dfrac{\sqrt{4} - 3!\%}{2\pmf} + 1$ Steve Wilson, 8/23 Lawrence, KS |
972 (3.0) $3^4 \times 12$ Kevin Solecki, 8/08 Olathe, KS |
973 (3.8) $\dfrac{\sqrt{4}}{2\pmf} - \dfrac{3}{.\overline{1}}$ Steve Wilson, 8/23 Lawrence, KS |
974 (3.6) $.1^{-3} - 4! - 2$ Steve Wilson, 8/23 Lawrence, KS |
976 (3.4) $\dfrac{3 - 1}{2\pmf} - 4!$ Steve Wilson, 8/23 Lawrence, KS |
977 (3.8) $(1\%^{-4})\%\pm - 23$ Steve Wilson, 8/23 Lawrence, KS |
978 (3.6) $.1^{-3} - 4! + 2$ Steve Wilson, 8/23 Lawrence, KS |
980 (2.6) $\dfrac{3 - 1 - 4\%}{.2\%}$ Steve Wilson, 12/12 Raytown, MO |
|||
981 (3.2) $\sqrt[.1]{2} - 43$ Steve Wilson, 8/23 Lawrence, KS |
984 (3.4) $.1^{-3} - 2^4$ Steve Wilson, 8/23 Lawrence, KS |
985 (3.2) $31^2 + 4!$ Wei Zhang, 6/12 Lawrence, KS |
986 (3.6) $\dfrac{\sqrt{4} - 3\%}{2\pmf} + 1$ Steve Wilson, 8/23 Lawrence, KS |
987 (3.4) $\dfrac{\sqrt{4}}{2\pmf} - 13$ Steve Wilson, 8/23 Lawrence, KS |
988 (3.6) $.1^{-3} - \dfrac{4!}{2}$ Steve Wilson, 8/23 Lawrence, KS |
990 (2.8) $\dfrac{4 \times .3 + 1}{.\overline{2}\%}$ Steve Wilson, 12/12 Raytown, MO |
||||
991 (3.8) $(1\%^{-4})\%\pm - 3^2$ Steve Wilson, 8/23 Lawrence, KS |
992 (3.4) $.1^{-3} - 4 \times 2$ Steve Wilson, 8/23 Lawrence, KS |
993 (3.2) $\sqrt[.2]{4} - 31$ Steve Wilson, 8/23 Lawrence, KS |
994 (3.4) $.1^{-3} - 4 - 2$ Steve Wilson, 8/23 Lawrence, KS |
995 (2.6) $\dfrac{3 + 1 - 2\%}{.4\%}$ Steve Wilson, 12/12 Raytown, MO |
996 (2.4) $\dfrac{2 + 1}{.3\%} - 4$ Steve Wilson, 12/12 Raytown, MO |
997 (3.4) $\dfrac{\sqrt{4}}{2\pmf} - 3 \times 1$ Steve Wilson, 8/23 Lawrence, KS |
998 (2.4) $\dfrac{3 + 1}{.4\%} - 2$ Katie Roberts, 6/12 Washington, DC |
999 (3.4) $\dfrac{\sqrt{4}}{2\pmf} - 1^3$ Steve Wilson, 8/23 Lawrence, KS |
1000 (2.2) $\dfrac{3 \times 2 + 4}{1\%}$ Steve Wilson, 12/12 Raytown, MO |
|
1001 (3.4) $\dfrac{\sqrt{4}}{2\pmf} + 1^3$ Steve Wilson, 8/23 Lawrence, KS |
1002 (2.4) $\dfrac{3 + 1}{.4\%} + 2$ Steve Wilson, 7/13 Lawrence, KS |
1003 (3.4) $\dfrac{\sqrt{4}}{2\pmf} + 3 \times 1$ Steve Wilson, 8/23 Lawrence, KS |
1004 (2.4) $\dfrac{2 + 1}{.3\%} + 4$ Steve Wilson, 7/13 Lawrence, KS |
1005 (2.6) $\dfrac{3 + 1 + 2\%}{.4\%}$ Steve Wilson, 7/13 Lawrence, KS |
1006 (3.4) $.1^{-3} + 4 + 2$ Steve Wilson, 8/23 Lawrence, KS |
1007 (3.6) $\dfrac{\sqrt{4}}{2\pmf} + 3! + 1$ Steve Wilson, 8/23 Lawrence, KS |
1008 (3.4) $.1^{-3} + 4 \times 2$ Steve Wilson, 8/23 Lawrence, KS |
1009 (3.6) $\sqrt[.1]{2} - \dfrac{3}{\sqrt{4\%}}$ Steve Wilson, 8/23 Lawrence, KS |
1010 (3.8) $.1^{-3} + \dfrac{\sqrt{4}}{.2}$ Steve Wilson, 8/23 Lawrence, KS |
|
1011 (3.2) $\sqrt[.2]{4} - 13$ Steve Wilson, 8/23 Lawrence, KS |
1012 (3.2) $\sqrt[.1]{2} - 4 \times 3$ Steve Wilson, 8/23 Lawrence, KS |
1013 (3.4) $\dfrac{\sqrt{4}}{2\pmf} + 13$ Steve Wilson, 8/23 Lawrence, KS |
1014 (3.4) $\sqrt[.1]{2} - 3! - 4$ Steve Wilson, 8/23 Lawrence, KS |
1015 (3.4) $\sqrt[.1]{2} - \sqrt{3^4}$ Steve Wilson, 8/23 Lawrence, KS |
1016 (3.4) $.1^{-3} + 2^4$ Steve Wilson, 8/23 Lawrence, KS |
1017 (3.2) $\sqrt[.1]{2} - 4 - 3$ Steve Wilson, 8/23 Lawrence, KS |
1018 (3.4) $\sqrt[.1]{2} - 3 \times \sqrt{4}$ Steve Wilson, 8/23 Lawrence, KS |
1019 (3.4) $\sqrt[.1]{2} - 3 - \sqrt{4}$ Steve Wilson, 8/23 Lawrence, KS |
1020 (2.6) $\dfrac{2.4 + 1}{.\overline{3}\%}$ Steve Wilson, 7/13 Lawrence, KS |
|
1021 (3.2) $\sqrt[.1]{4 - 2} - 3$ Steve Wilson, 8/23 Lawrence, KS |
1022 (3.2) $\sqrt[.2]{4} - 3 + 1$ Steve Wilson, 8/23 Lawrence, KS |
1023 (3.0) $4^{3+2} - 1$ Steve Wilson, 8/23 Lawrence, KS |
1024 (3.0) $4^{3+2} \times 1$ Steve Wilson, 8/23 Lawrence, KS |
1025 (3.0) $4^{3+2} + 1$ Steve Wilson, 8/23 Lawrence, KS |
1026 (3.2) $\sqrt[.2]{4} + 3 - 1$ Steve Wilson, 8/23 Lawrence, KS |
1027 (3.2) $\sqrt[.1]{4 - 2} + 3$ Steve Wilson, 8/23 Lawrence, KS |
1028 (3.2) $\sqrt[.2]{4} + 3 + 1$ Steve Wilson, 8/23 Lawrence, KS |
1029 (3.4) $\sqrt[.1]{2} + 3 + \sqrt{4}$ Steve Wilson, 8/23 Lawrence, KS |
1030 (3.4) $\sqrt[.1]{2} + 3 \times \sqrt{4}$ Steve Wilson, 8/23 Lawrence, KS |
|
1031 (3.2) $\sqrt[.1]{2} + 4 + 3$ Steve Wilson, 8/23 Lawrence, KS |
1032 (3.4) $\sqrt[.1]{2} + \dfrac{4!}{3}$ Steve Wilson, 8/23 Lawrence, KS |
1033 (3.4) $\sqrt[.1]{2} + \sqrt{3^4}$ Steve Wilson, 8/23 Lawrence, KS |
1034 (3.4) $\sqrt[.1]{2} + 3! + 4$ Steve Wilson, 8/23 Lawrence, KS |
1036 (3.2) $\sqrt[.1]{2} + 4 \times 3$ Steve Wilson, 8/23 Lawrence, KS |
1037 (3.2) $\sqrt[.2]{4} + 13$ Steve Wilson, 8/23 Lawrence, KS |
1039 (3.6) $\sqrt[.1]{2} + \dfrac{3}{\sqrt{4\%}}$ Steve Wilson, 8/23 Lawrence, KS |
1040 (2.6) $\dfrac{3 - 2 + 4\%}{.1\%}$ Steve Wilson, 7/13 Lawrence, KS |
|||
1042 (3.4) $.1^{-3} + 42$ Steve Wilson, 8/23 Lawrence, KS |
1045 (3.4) $\sqrt[.1]{2} + 4! - 3$ Steve Wilson, 8/23 Lawrence, KS |
1047 (3.4) $\sqrt{\sqrt[.1]{4}} + 23$ Steve Wilson, 8/23 Lawrence, KS |
1048 (3.4) $\sqrt[.1]{2} + 3! \times 4$ Steve Wilson, 8/23 Lawrence, KS |
1049 (3.4) $\dfrac{4! - 3}{2\%} - 1$ Steve Wilson, 8/23 Lawrence, KS |
1050 (2.2) $\dfrac{42}{(3 + 1)\%}$ Steve Wilson, 7/13 Lawrence, KS |
|||||
1051 (3.4) $\sqrt[.1]{2} + 4! + 3$ Steve Wilson, 8/23 Lawrence, KS |
1054 (3.4) $\sqrt[.2]{4} + \dfrac{3}{.1}$ Steve Wilson, 8/23 Lawrence, KS |
1055 (3.2) $\sqrt[.2]{4} + 31$ Steve Wilson, 8/23 Lawrence, KS |
1056 (3.4) $\sqrt{\sqrt[.1]{4}} + 32$ Steve Wilson, 8/23 Lawrence, KS |
1058 (3.2) $\sqrt[.1]{2} + 34$ Steve Wilson, 8/23 Lawrence, KS |
1060 (3.6) $\sqrt[.1]{2} + \sqrt{3!^4}$ Steve Wilson, 8/23 Lawrence, KS |
|||||
1064 (3.6) $(1\pm^{-2})\pm + 4^3$ Steve Wilson, 8/23 Lawrence, KS |
1067 (3.2) $\sqrt[.1]{2} + 43$ Steve Wilson, 8/23 Lawrence, KS |
|||||||||
1072 (2.8) $4 \times \left( \dfrac{.3}{.\overline{1}\%} - 2 \right)$ Steve Wilson, 7/13 Lawrence, KS |
1074 (2.8) $3 \times \left( \dfrac{.4}{.\overline{1}\%} - 2 \right)$ Steve Wilson, 7/13 Lawrence, KS |
1078 (2.8) $4 \times \dfrac{.3}{.\overline{1}\%} - 2$ Steve Wilson, 7/13 Lawrence, KS |
1080 (2.6) $3 \times \dfrac{2}{(1 - .\overline{4})\%}$ Steve Wilson, 7/13 Lawrence, KS |
|||||||
1081 (3.6) $(1\pm^{-2})\pm + 3^4$ Steve Wilson, 8/23 Lawrence, KS |
1082 (2.8) $4 \times \dfrac{.3}{.\overline{1}\%} + 2$ Steve Wilson, 7/13 Lawrence, KS |
1084 (3.6) $\sqrt[.2]{4} + \dfrac{3!}{.1}$ Steve Wilson, 8/23 Lawrence, KS |
1086 (2.8) $3 \times \left( \dfrac{.4}{.\overline{1}\%} + 2 \right)$ Steve Wilson, 7/13 Lawrence, KS |
1088 (2.8) $4 \times \left( \dfrac{.3}{.\overline{1}\%} + 2 \right)$ Steve Wilson, 7/13 Lawrence, KS |
1089 (3.0) $(34 - 1)^2$ Tien Huynh, 9/10 Olathe, KS |
|||||
1096 (3.4) $\sqrt[.1]{2} + 4! \times 3$ Steve Wilson, 8/23 Lawrence, KS |
1099 (3.4) $\sqrt[.1]{2} + \dfrac{3}{4\%}$ Steve Wilson, 8/23 Lawrence, KS |
1100 (2.2) $\dfrac{4 \times 2 + 3}{1\%}$ Steve Wilson, 7/13 Lawrence, KS |
||||||||
1105 (3.4) $\sqrt[.1]{2} + 3^4$ Steve Wilson, 8/23 Lawrence, KS |
1110 (2.8) $\dfrac{ \dfrac{1}{.\overline{4}\%} - 3}{.2}$ Steve Wilson, 7/13 Lawrence, KS |
|||||||||
1120 (2.4) $(3 - .2) \times \dfrac{4}{1\%}$ Steve Wilson, 7/13 Lawrence, KS |
||||||||||
1122 (2.8) $\dfrac{1}{.2\% \times .\overline{4}} - 3$ Steve Wilson, 7/13 Lawrence, KS |
1124 (2.6) $\dfrac{3 + 2}{.\overline{4}\%} - 1$ Steve Wilson, 7/13 Lawrence, KS |
1125 (2.6) $\dfrac{3 + 2}{.\overline{4}\%} \times 1$ Steve Wilson, 7/13 Lawrence, KS |
1126 (2.6) $\dfrac{3 + 2}{.\overline{4}\%} + 1$ Steve Wilson, 7/13 Lawrence, KS |
1128 (2.8) $\dfrac{1}{.2\% \times .\overline{4}} + 3$ Steve Wilson, 7/13 Lawrence, KS |
||||||
1134 (2.4) $42 \times \dfrac{3}{.\overline{1}}$ Steve Wilson, 7/13 Lawrence, KS |
1135 (3.4) $\dfrac{4! - 1.3}{2\%}$ Steve Wilson, 8/23 Lawrence, KS |
1136 (3.4) $\dfrac{4!}{2\%}$ Steve Wilson, 8/23 Lawrence, KS |
1137 (2.8) $\dfrac{4 - .21}{.\overline{3}\%}$ Steve Wilson, 7/13 Lawrence, KS |
1139 (2.8) $\dfrac{4 - .2}{.\overline{3}\%} - 1$ Steve Wilson, 7/13 Lawrence, KS |
1140 (2.4) $(4 - .2) \times \dfrac{3}{1\%}$ Steve Wilson, 7/13 Lawrence, KS |
|||||
1141 (2.8) $\dfrac{4 - .2}{.\overline{3}\%} + 1$ Steve Wilson, 7/13 Lawrence, KS |
1143 (3.0) $\dfrac{4 - .2 + 1\%}{.\overline{3}\%}$ Steve Wilson, 7/13 Lawrence, KS |
1144 (3.6) $\sqrt{\sqrt[.1]{4}} + (3 + 2)!$ Steve Wilson, 8/23 Lawrence, KS |
1147 (3.4) $\dfrac{4! - 1}{2\%} - 3$ Steve Wilson, 8/23 Lawrence, KS |
1150 (2.6) $\dfrac{ \dfrac{3}{.\overline{1}} - 4}{2\%}$ Steve Wilson, 7/13 Lawrence, KS |
||||||
1152 (2.4) $32 \times \dfrac{4}{.\overline{1}}$ Steve Wilson, 7/13 Lawrence, KS |
1153 (3.4) $\dfrac{4! - 1}{2\%} + 3$ Steve Wilson, 8/23 Lawrence, KS |
1155 (3.0) $34^2 - 1$ John Hepfer, 9/07 Shawnee, KS |
1156 (3.0) $34^2 \times 1$ Melissa Kuskowski, 3/07 Olathe, KS |
1157 (3.0) $34^2 + 1$ Scott Dixon, 12/07 Lenexa, KS |
1160 (3.6) $\dfrac{3! \times 2 - .4}{1\%}$ Steve Wilson, 8/23 Lawrence, KS |
|||||
1164 (2.8) $\dfrac{4 - .12}{.\overline{3}\%}$ Steve Wilson, 7/13 Lawrence, KS |
1165 (3.6) $\dfrac{4! - 1 + .3}{2\%}$ Steve Wilson, 8/23 Lawrence, KS |
1168 (2.8) $\dfrac{4 - .1}{.\overline{3}\%} - 2$ Steve Wilson, 7/13 Lawrence, KS |
1169 (2.8) $\dfrac{3 - .4}{.\overline{2}\%} - 1$ Steve Wilson, 7/13 Lawrence, KS |
1170 (2.8) $\dfrac{3 - .4}{.\overline{2}\%} \times 1$ Steve Wilson, 7/13 Lawrence, KS |
||||||
1171 (2.8) $\dfrac{3 - .4}{.\overline{2}\%} + 1$ Steve Wilson, 7/13 Lawrence, KS |
1172 (2.8) $\dfrac{4 - .1}{.\overline{3}\%} + 2$ Steve Wilson, 7/13 Lawrence, KS |
1173 (3.8) $\dfrac{4!}{2\%} - \dfrac{3}{.\overline{1}}$ Steve Wilson, 8/23 Lawrence, KS |
1174 (3.6) $\sqrt[.1]{2} - \dfrac{3}{(\sqrt{4})\%}$ Steve Wilson, 8/23 Lawrence, KS |
1175 (2.4) $\dfrac{ \dfrac{1}{2\%} - 3}{4\%}$ Steve Wilson, 8/23 Lawrence, KS |
1176 (2.8) $(1 - 2\%) \times \dfrac{4}{.\overline{3}\%}$ Steve Wilson, 8/23 Lawrence, KS |
1177 (3.8) $\dfrac{4}{\left(\sqrt{.\overline{1}}\right)\%} - 23$ Steve Wilson, 8/23 Lawrence, KS |
1179 (2.6) $\dfrac{4}{.\overline{3}\%} - 21$ Steve Wilson, 8/23 Lawrence, KS |
1180 (2.4) $\dfrac{4 \times 3 - .2}{1\%}$ Steve Wilson, 8/23 Lawrence, KS |
||
1182 (2.6) $\dfrac{ \dfrac{4}{3\%} - 2}{.\overline{1}}$ Steve Wilson, 8/23 Lawrence, KS |
1184 (3.6) $\dfrac{4! - .3}{2\%} - 1$ Steve Wilson, 8/23 Lawrence, KS |
1185 (2.8) $\dfrac{4 - \dfrac{.1}{2}}{.\overline{3}\%}$ Steve Wilson, 8/23 Lawrence, KS |
1186 (3.6) $\dfrac{4! - .3}{2\%} + 1$ Steve Wilson, 8/23 Lawrence, KS |
1187 (3.4) $\dfrac{4!}{2\%} - 13$ Steve Wilson, 8/23 Lawrence, KS |
1188 (2.6) $\dfrac{4}{.\overline{3}\%} - 12$ Steve Wilson, 8/23 Lawrence, KS |
1189 (3.8) $\dfrac{4! - .1}{2\%} - 3!$ Steve Wilson, 8/23 Lawrence, KS |
1190 (3.8) $\dfrac{4! - .3 + .1}{2\%}$ Steve Wilson, 8/23 Lawrence, KS |
|||
1191 (2.8) $\dfrac{4 - (2 + 1)\%}{.\overline{3}\%}$ Steve Wilson, 8/23 Lawrence, KS |
1192 (2.2) $4 \times \left( \dfrac{3}{1\%} - 2 \right)$ Steve Wilson, 8/23 Lawrence, KS |
1193 (2.8) $\dfrac{4 - 2\%}{.\overline{3}\%} - 1$ Steve Wilson, 8/23 Lawrence, KS |
1194 (2.2) $3 \times \left( \dfrac{4}{1\%} - 2 \right)$ Steve Wilson, 8/23 Lawrence, KS |
1195 (2.8) $\dfrac{4 - 2\%}{.\overline{3}\%} + 1$ Steve Wilson, 8/23 Lawrence, KS |
1196 (3.4) $\dfrac{3! \times 2}{1\%} - 4$ Steve Wilson, 8/23 Lawrence, KS |
1197 (2.6) $\dfrac{4}{.\overline{3}\%} - 2 - 1$ Steve Wilson, 8/23 Lawrence, KS |
1198 (2.2) $\dfrac{4 \times 3}{1\%} - 2$ Steve Wilson, 8/23 Lawrence, KS |
1199 (2.6) $\dfrac{4}{.\overline{3}\%} - 2 + 1$ Steve Wilson, 8/23 Lawrence, KS |
1200 (2.2) $\dfrac{12}{(4 - 3)\%}$ Steve Wilson, 8/23 Lawrence, KS |
Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201-1600), Page 5 (1601+)