\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator{\antilog}{antilog} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} \)

Integermania!

Four Fours

Four fours is a classic problem, dating back at least 90 years. Create each of the positive integers using four copies of 4, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here!  This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

PREVIOUS Page, Page 12 (4401-4800), NEXT Page, ... Index to All Pages.

  4401 (4.0)
$\dfrac{\sqrt{4} - 44\pmf}{.\overline{4}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
4402 (4.6)
$44 \times \antilog\sqrt{4} + \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4403 (5.6)
$\cot\arctan((\cot\arctan 44)\%)$
$\phantom. + \sqrt{\dfrac{4}{.\overline{4}}}$

Steve Wilson, 5/25
Lawrence, KS
4404 (4.0)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - 4 \times 4!$
Steve Wilson, 1/25
Lawrence, KS
4405 (5.4)
$\cot\arctan((\cot\arctan 44)\%)$
$\phantom. + \dfrac{\sqrt{4}}{.4}$

Steve Wilson, 5/25
Lawrence, KS
4406 (4.0)
$\dfrac{\sqrt{4} - 4\%}{.\overline{4}\pmf} - 4$
Steve Wilson, 1/25
Lawrence, KS
4407 (5.6)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \dfrac{4}{(\sqrt{4})\%}$

Steve Wilson, 4/25
Lawrence, KS
4408 (4.2)
$\dfrac{\sqrt{4} - 4\%}{.\overline{4}\pmf} - \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4409 (4.8)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. - 4 - 4$

Steve Wilson, 6/25
Lawrence, KS
4410 (4.0)
$\dfrac{\sqrt{4} - 4\%}{.\overline{44}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
  4411 (5.0)
$\cosh(4 \times \arcosh\sqrt{4!}) - \dfrac{4!}{4}$
Steve Wilson, 6/25
Lawrence, KS
4412 (4.2)
$\dfrac{\sqrt{4} - 4\%}{.\overline{4}\pmf} + \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4413 (5.0)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. - \sqrt{4 \times 4}$

Steve Wilson, 6/25
Lawrence, KS
4414 (4.0)
$\dfrac{\sqrt{4} - 4\%}{.\overline{4}\pmf} + 4$
Steve Wilson, 1/25
Lawrence, KS
4415 (5.0)
$\cosh(4 \times \arcosh\sqrt{4!}) - \dfrac{4}{\sqrt{4}}$
Steve Wilson, 6/25
Lawrence, KS
4416 (4.8)
$\cosh(4 \times \arcosh\sqrt{4!}) - \dfrac44$
Steve Wilson, 6/25
Lawrence, KS
4417 (4.8)
$\cosh(4 \times \arcosh\sqrt{4!}) \times \dfrac44$
Steve Wilson, 6/25
Lawrence, KS
4418 (4.8)
$\cosh(4 \times \arcosh\sqrt{4!}) + \dfrac44$
Steve Wilson, 6/25
Lawrence, KS
4419 (5.0)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \dfrac{4}{\sqrt{4}}$

Steve Wilson, 6/25
Lawrence, KS
4420 (4.8)
$(44 + \sqrt{4\%}) \times \antilog\sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
  4421 (4.6)
$\dfrac{\antilog 4}{4}$
$\phantom. + \cosh(4 \times \arcosh 4)$

Steve Wilson, 6/25
Lawrence, KS
4422 (5.2)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \dfrac{\sqrt{4}}{.4}$

Steve Wilson, 6/25
Lawrence, KS
4423 (5.0)
$\cosh(4 \times \arcosh\sqrt{4!}) + \dfrac{4!}{4}$
Steve Wilson, 6/25
Lawrence, KS
4424 (4.6)
$44 \times \antilog\sqrt{4} + 4!$
Steve Wilson, 1/25
Lawrence, KS
4425 (4.8)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + 4 + 4$

Steve Wilson, 6/25
Lawrence, KS
4426 (5.2)
$\cosh(4 \times \arcosh\sqrt{4!}) + \dfrac{4}{.\overline{4}}$
Steve Wilson, 6/25
Lawrence, KS
4427 (5.0)
$\cosh(4 \times \arcosh\sqrt{4!}) + \dfrac{4}{.4}$
Steve Wilson, 6/25
Lawrence, KS
4428 (5.6)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \ln\sqrt{\sqrt{\exp 44}}$

Steve Wilson, 6/25
Lawrence, KS
4429 (5.2)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \dfrac{4!}{\sqrt{4}}$

Steve Wilson, 6/25
Lawrence, KS
4430 (5.8)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \ln\sqrt{\exp(4! + \sqrt{4})}$

Steve Wilson, 6/25
Lawrence, KS
  4431 (4.4)
$\dfrac{\sqrt{4} - (\sqrt{4})\%}{.\overline{4}\pmf} - 4!$
Steve Wilson, 1/25
Lawrence, KS
4432 (5.4)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \sqrt{(\tan\arcsec 4)^4}$

Steve Wilson, 6/25
Lawrence, KS
4433 (4.8)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + 4 \times 4$

Steve Wilson, 6/25
Lawrence, KS
4434 (4.2)
$\dfrac{\sqrt{4} - 4\%}{.\overline{4}\pmf} + 4!$
Steve Wilson, 1/25
Lawrence, KS
4435 (5.6)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \dfrac{4!}{\csch\ln\sqrt{4}}$

Steve Wilson, 6/25
Lawrence, KS
4436 (5.6)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + 4! - \cot\arctan\sqrt{4\%}$

Steve Wilson, 6/25
Lawrence, KS
4437 (4.2)
$\dfrac{\sqrt{4} - (4! + 4)\pmf}{.\overline{4}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
4438 (5.4)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \cot\arctan(4\%) - 4$

Steve Wilson, 6/25
Lawrence, KS
4439 (5.2)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + 4! - \sqrt{4}$

Steve Wilson, 6/25
Lawrence, KS
4440 (4.4)
$44.4 \times \antilog\sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
  4441 (5.2)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + (\sqrt{4 \times 4})!$

Steve Wilson, 6/25
Lawrence, KS
4442 (5.2)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \dfrac{\antilog\sqrt{4}}{4}$

Steve Wilson, 6/25
Lawrence, KS
4443 (5.2)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + 4! + \sqrt{4}$

Steve Wilson, 6/25
Lawrence, KS
4444 (2.0)
$4444$
Anders Skjäl, 4/04
Turku, Finland
4445 (4.6)
$\dfrac{\sqrt{4} - (\sqrt{4} + .\overline{4})\%}{.\overline{4}\pmf}$
Steve Wilson, 4/25
Lawrence, KS
4446 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \cosh(4 \times \arsinh\sqrt{4})$

Steve Wilson, 4/25
Lawrence, KS
4447 (5.6)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \sqrt{\dfrac{4}{.\overline{4}\%}}$

Steve Wilson, 6/25
Lawrence, KS
4448 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - \cosh(4 \times \arsinh\sqrt{4})$

Steve Wilson, 4/25
Lawrence, KS
4449 (5.2)
$\cosh(4 \times \arcosh\sqrt{4!}) + \sqrt[.4]{4}$
Steve Wilson, 6/25
Lawrence, KS
4450 (4.2)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - \dfrac{\sqrt{4}}{4\%}$
Steve Wilson, 1/25
Lawrence, KS
  4451 (4.2)
$\dfrac{\sqrt{4} - (\sqrt{4})\%}{.\overline{4}\pmf} - 4$
Steve Wilson, 1/25
Lawrence, KS
4452 (4.2)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - 4! - 4!$
Steve Wilson, 1/25
Lawrence, KS
4453 (4.4)
$\dfrac{\sqrt{4} - (\sqrt{4})\%}{.\overline{4}\pmf} - \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4454 (4.8)
$\dfrac{\sqrt{4} - (\sqrt{4})\% - .\overline{4}\pmf}{.\overline{4}\pmf}$
Steve Wilson, 4/25
Lawrence, KS
4455 (4.2)
$\dfrac{\sqrt{4} - (\sqrt{4})\%}{.\overline{44}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
4456 (3.8)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - 44$
Steve Wilson, 1/25
Lawrence, KS
4457 (4.4)
$\dfrac{\sqrt{4} - (\sqrt{4})\%}{.\overline{4}\pmf} + \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4458 (5.4)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \log((\antilog 44)\pm)$

Steve Wilson, 6/25
Lawrence, KS
4459 (4.2)
$\dfrac{\sqrt{4} - (\sqrt{4})\%}{.\overline{4}\pmf} + 4$
Steve Wilson, 1/25
Lawrence, KS
4460 (5.2)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - 4\pm \times \antilog 4$
Steve Wilson, 6/25
Lawrence, KS
  4461 (4.8)
$\cosh(4 \times \arcosh\sqrt{4!}) + 44$
Steve Wilson, 6/25
Lawrence, KS
4462 (5.4)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \dfrac{4!}{\csch\ln 4}$

Steve Wilson, 6/25
Lawrence, KS
4463 (5.6)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \cot\arctan((\sqrt{4})\%) - 4$

Steve Wilson, 6/25
Lawrence, KS
4464 (4.6)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - \dfrac{4!}{\sqrt{.\overline{4}}}$
Steve Wilson, 1/25
Lawrence, KS
4465 (4.6)
$\dfrac{\sqrt{4} - (\sqrt{4} - .\overline{4})\%}{.\overline{4}\pmf}$
Steve Wilson, 4/25
Lawrence, KS
4466 (5.6)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \cosh\left(4 \times \arsinh\sqrt{\sqrt{4}}\right)$

Steve Wilson, 6/25
Lawrence, KS
4467 (4.2)
$\dfrac{\sqrt{4} - 4\pmf}{.\overline{4}\pmf} - 4!$
Steve Wilson, 1/25
Lawrence, KS
4468 (4.0)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - \sqrt[.4]{4}$
Steve Wilson, 1/25
Lawrence, KS
4469 (5.8)
$\cosh(4 \times \arcosh\sqrt{4!}) + \sqrt{4}$
$\phantom. + \cot\arctan((\sqrt{4})\%)$

Steve Wilson, 6/25
Lawrence, KS
4470 (4.6)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - \sqrt{\dfrac{4}{.\overline{4}\%}}$
Steve Wilson, 1/25
Lawrence, KS
  4471 (5.6)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \cot\arctan((\sqrt{4})\%) + 4$

Steve Wilson, 6/25
Lawrence, KS
4472 (4.0)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - 4! - 4$
Steve Wilson, 1/25
Lawrence, KS
4473 (5.8)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. - \dfrac{4!}{\tanh\ln\sqrt{.4}}$

Steve Wilson, 6/25
Lawrence, KS
4474 (4.2)
$\dfrac{\sqrt{4}}{.\overline{44}\pmf} - 4! - \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4475 (4.6)
$\dfrac{\sqrt{4} - \dfrac{.\overline{4}\%}{.4}}{.\overline{4}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
4476 (4.0)
$\dfrac{\sqrt{4}}{.\overline{44}\pmf} - 4!$
Steve Wilson, 1/25
Lawrence, KS
4477 (5.2)
$\cosh(4 \times \arcosh\sqrt{4!}) + \dfrac{4!}{.4}$
Steve Wilson, 6/25
Lawrence, KS
4478 (4.2)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + 4! + \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4479 (4.4)
$\dfrac{\sqrt{4} - (\sqrt{4})\%}{.\overline{4}\pmf} + 4!$
Steve Wilson, 1/25
Lawrence, KS
4480 (4.0)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - 4! + 4$
Steve Wilson, 1/25
Lawrence, KS
  4481 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - \ln\sqrt{\exp(4^4)}$

Steve Wilson, 4/25
Lawrence, KS
4482 (4.0)
$\dfrac{\sqrt{4} - (4 + 4)\pmf}{.\overline{4}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
4483 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \antilog\sqrt{4} - 4!$

Steve Wilson, 4/25
Lawrence, KS
4484 (3.8)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - 4 \times 4$
Steve Wilson, 1/25
Lawrence, KS
4485 (4.2)
$\dfrac{\sqrt{4} + 4\pmf}{.\overline{4}\pmf} - 4!$
Steve Wilson, 1/25
Lawrence, KS
4486 (5.2)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - (\antilog 4)\pm - 4$
Steve Wilson, 6/25
Lawrence, KS
4487 (4.0)
$\dfrac{\sqrt{4} - 4\pmf}{.\overline{4}\pmf} - 4$
Steve Wilson, 1/25
Lawrence, KS
4488 (4.2)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - \dfrac{4!}{\sqrt{4}}$
Steve Wilson, 1/25
Lawrence, KS
4489 (4.2)
$\dfrac{\sqrt{4} - 4\pmf}{.\overline{4}\pmf} - \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4490 (4.0)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - \dfrac{4}{.4}$
Steve Wilson, 1/25
Lawrence, KS
  4491 (4.0)
$\dfrac{4 - \sqrt{4} - 4\pmf}{.\overline{4}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
4492 (3.8)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - 4 - 4$
Steve Wilson, 1/25
Lawrence, KS
4493 (4.2)
$\dfrac{\sqrt{4} - 4\pmf}{.\overline{4}\pmf} + \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4494 (4.0)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - 4 - \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4495 (4.0)
$\dfrac{\sqrt{4} - 4\pmf}{.\overline{4}\pmf} + 4$
Steve Wilson, 1/25
Lawrence, KS
4496 (3.8)
$\dfrac{4 - \sqrt{4}}{.\overline{4}\pmf} - 4$
Steve Wilson, 1/25
Lawrence, KS
4497 (4.4)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - \sqrt{\dfrac{4}{.\overline{4}}}$
Steve Wilson, 1/25
Lawrence, KS
4498 (4.0)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - 4 + \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4499 (3.8)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - \dfrac44$
Steve Wilson, 1/25
Lawrence, KS
4500 (2.6)
$\dfrac{4 \times 4 + 4}{.\overline{4}\%}$
David Barksdale, 3/09
Kirkland, WA
  4501 (3.8)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + \dfrac44$
Steve Wilson, 1/25
Lawrence, KS
4502 (4.0)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + 4 - \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4503 (4.4)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + \sqrt{\dfrac{4}{.\overline{4}}}$
Steve Wilson, 1/25
Lawrence, KS
4504 (3.8)
$\dfrac{4 - \sqrt{4}}{.\overline{4}\pmf} + 4$
Steve Wilson, 1/25
Lawrence, KS
4505 (4.0)
$\dfrac{\sqrt{4} + 4\pmf}{.\overline{4}\pmf} - 4$
Steve Wilson, 1/25
Lawrence, KS
4506 (4.0)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + 4 + \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4507 (4.2)
$\dfrac{\sqrt{4} + 4\pmf}{.\overline{4}\pmf} - \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4508 (3.8)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + 4 + 4$
Steve Wilson, 1/25
Lawrence, KS
4509 (4.0)
$\dfrac{4 - \sqrt{4} + 4\pmf}{.\overline{4}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
4510 (4.0)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + \dfrac{4}{.4}$
Steve Wilson, 1/25
Lawrence, KS
  4511 (4.2)
$\dfrac{\sqrt{4} + 4\pmf}{.\overline{4}\pmf} + \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4512 (4.0)
$\dfrac{4! \times (4 - 4!\%)}{(\sqrt{4})\%}$
Steve Wilson, 4/25
Lawrence, KS
4513 (4.0)
$\dfrac{\sqrt{4} + 4\pmf}{.\overline{4}\pmf} + 4$
Steve Wilson, 1/25
Lawrence, KS
4514 (5.4)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \cosh(4 \times \arcosh\sqrt{4})$

Steve Wilson, 6/25
Lawrence, KS
4515 (4.2)
$\dfrac{\sqrt{4} - 4\pmf}{.\overline{4}\pmf} + 4!$
Steve Wilson, 1/25
Lawrence, KS
4516 (3.8)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + 4 \times 4$
Steve Wilson, 1/25
Lawrence, KS
4517 (5.0)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \dfrac{4}{4\%}$

Steve Wilson, 6/25
Lawrence, KS
4518 (4.0)
$\dfrac{\sqrt{4} + (4 + 4)\pmf}{.\overline{4}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
4519 (5.4)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \antilog\sqrt{4} + \sqrt{4}$

Steve Wilson, 6/25
Lawrence, KS
4520 (4.0)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + 4! - 4$
Steve Wilson, 1/25
Lawrence, KS
  4521 (4.4)
$\dfrac{\sqrt{4} + (\sqrt{4})\%}{.\overline{4}\pmf} - 4!$
Steve Wilson, 1/25
Lawrence, KS
4522 (4.2)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + 4! - \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4523 (5.6)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - \sqrt{4}$
$\phantom. + \cot\arctan(4\%)$

Steve Wilson, 6/25
Lawrence, KS
4524 (4.0)
$\dfrac{\sqrt{4}}{.\overline{44}\pmf} + 4!$
Steve Wilson, 1/25
Lawrence, KS
4525 (4.6)
$\dfrac{\sqrt{4} + \dfrac{.\overline{4}\%}{.4}}{.\overline{4}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
4526 (4.2)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + 4! + \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4527 (5.6)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + \sqrt{4}$
$\phantom. + \cot\arctan(4\%)$

Steve Wilson, 6/25
Lawrence, KS
4528 (4.0)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + 4! + 4$
Steve Wilson, 1/25
Lawrence, KS
4529 (5.4)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + 4$
$\phantom. + \cot\arctan(4\%)$

Steve Wilson, 6/25
Lawrence, KS
4530 (4.6)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + \sqrt{\dfrac{4}{.\overline{4}\%}}$
Steve Wilson, 1/25
Lawrence, KS
  4531 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \antilog\sqrt{4} + 4!$

Steve Wilson, 4/25
Lawrence, KS
4532 (4.0)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + \sqrt[.4]{4}$
Steve Wilson, 1/25
Lawrence, KS
4533 (4.2)
$\dfrac{\sqrt{4} + 4\pmf}{.\overline{4}\pmf} + 4!$
Steve Wilson, 1/25
Lawrence, KS
4534 (5.4)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + 4! + (\antilog 4)\pm$
Steve Wilson, 6/25
Lawrence, KS
4535 (5.6)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + 4$
$\phantom. + \coth\ln\coth\arcosh 4$

Steve Wilson, 6/25
Lawrence, KS
4536 (4.6)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + \dfrac{4!}{\sqrt{.\overline{4}}}$
Steve Wilson, 1/25
Lawrence, KS
4537 (5.4)
$\cosh(4 \times \arcosh\sqrt{4!})$
$\phantom. + \left(\dfrac{\sqrt{4}}{.4}\right)!$

Steve Wilson, 6/25
Lawrence, KS
4538 (5.6)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf}$
$\phantom. + \log((\antilog 44)\pmm)$

Steve Wilson, 6/25
Lawrence, KS
4539 (5.6)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf}$
$\phantom. + \log((\antilog 44)\%\pm)$

Steve Wilson, 6/25
Lawrence, KS
4540 (5.2)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + 4\pm \times \antilog 4$
Steve Wilson, 6/25
Lawrence, KS
  4541 (4.2)
$\dfrac{\sqrt{4} + (\sqrt{4})\%}{.\overline{4}\pmf} - 4$
Steve Wilson, 1/25
Lawrence, KS
4542 (5.4)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf}$
$\phantom. + \log((\antilog 44)\%)$

Steve Wilson, 6/25
Lawrence, KS
4543 (4.4)
$\dfrac{\sqrt{4} + (\sqrt{4})\%}{.\overline{4}\pmf} - \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4544 (3.8)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + 44$
Steve Wilson, 1/25
Lawrence, KS
4545 (4.2)
$\dfrac{\sqrt{4} + (\sqrt{4})\%}{.\overline{44}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
4546 (5.6)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - 4$
$\phantom. + \cot\arctan((\sqrt{4})\%)$

Steve Wilson, 6/25
Lawrence, KS
4547 (4.4)
$\dfrac{\sqrt{4} + (\sqrt{4})\%}{.\overline{4}\pmf} + \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4548 (4.2)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + 4! + 4!$
Steve Wilson, 1/25
Lawrence, KS
4549 (4.2)
$\dfrac{\sqrt{4} + (\sqrt{4})\%}{.\overline{4}\pmf} + 4$
Steve Wilson, 1/25
Lawrence, KS
4550 (4.2)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + \dfrac{\sqrt{4}}{4\%}$
Steve Wilson, 1/25
Lawrence, KS
  4551 (5.6)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + \dfrac{4!}{\sech\ln 4}$
Steve Wilson, 6/25
Lawrence, KS
4552 (5.8)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + \sqrt{4}$
$\phantom. + \cot\arctan((\sqrt{4})\%)$

Steve Wilson, 6/25
Lawrence, KS
4553 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \dfrac{4!}{.\overline{4}}$

Steve Wilson, 4/25
Lawrence, KS
4554 (5.4)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + \dfrac{4!}{.\overline{4}}$
Steve Wilson, 6/25
Lawrence, KS
4555 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - \dfrac{4!}{.\overline{4}}$

Steve Wilson, 4/25
Lawrence, KS
4556 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \dfrac{4!}{\sech\ln 4}$

Steve Wilson, 4/25
Lawrence, KS
4557 (5.6)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \dfrac{\sqrt{4}}{4\%}$

Steve Wilson, 4/25
Lawrence, KS
4558 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - \dfrac{4!}{\sech\ln 4}$

Steve Wilson, 4/25
Lawrence, KS
4559 (5.6)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - \dfrac{\sqrt{4}}{4\%}$

Steve Wilson, 4/25
Lawrence, KS
4560 (5.2)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + \dfrac{4!}{.4}$
Steve Wilson, 6/25
Lawrence, KS
  4561 (5.6)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - 4! - 4!$

Steve Wilson, 4/25
Lawrence, KS
4562 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \dfrac{4!}{\csch\ln 4}$

Steve Wilson, 4/25
Lawrence, KS
4563 (4.2)
$\dfrac{\sqrt{4} + (4! + 4)\pmf}{.\overline{4}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
4564 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - \dfrac{4!}{\csch\ln 4}$

Steve Wilson, 4/25
Lawrence, KS
4565 (5.2)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - 44$

Steve Wilson, 4/25
Lawrence, KS
4566 (4.2)
$\dfrac{\sqrt{4} + 4\%}{.\overline{4}\pmf} - 4!$
Steve Wilson, 1/25
Lawrence, KS
4567 (5.6)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - 4\pm \times \antilog 4$

Steve Wilson, 4/25
Lawrence, KS
4568 (5.4)
$\bigg(\coth\ln\coth\arcosh(4!)$
$\phantom. - \dfrac{4}{.\overline{4}}\bigg) \times 4$

Steve Wilson, 6/25
Lawrence, KS
4569 (4.4)
$\dfrac{\sqrt{4} + (\sqrt{4})\%}{.\overline{4}\pmf} + 4!$
Steve Wilson, 1/25
Lawrence, KS
4570 (5.8)
$\dfrac{\sqrt{4} + (\sqrt{4})\%}{.\overline{4}\pmf}$
$\phantom. + \cot\arctan(4\%)$

Steve Wilson, 6/25
Lawrence, KS
  4571 (5.6)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + \cosh(4 \times \arcsch\sqrt{.4})$
Steve Wilson, 6/25
Lawrence, KS
4572 (5.8)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + \dfrac{4!}{\tanh\ln\sqrt{\sqrt{4}}}$
Steve Wilson, 6/25
Lawrence, KS
4573 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - 4! - (\antilog 4)\pm$

Steve Wilson, 4/25
Lawrence, KS
4574 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \cosh(\sqrt{4} \times \arsinh 4)$

Steve Wilson, 4/25
Lawrence, KS
4575 (5.4)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \sqrt[.4]{4}$

Steve Wilson, 4/25
Lawrence, KS
4576 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - \cosh(\sqrt{4} \times \arsinh 4)$

Steve Wilson, 4/25
Lawrence, KS
4577 (5.4)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - \sqrt[.4]{4}$

Steve Wilson, 4/25
Lawrence, KS
4578 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \cot\arctan(4\%) - 4$

Steve Wilson, 4/25
Lawrence, KS
4579 (5.4)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - 4! - 4$

Steve Wilson, 4/25
Lawrence, KS
4580 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - \cot\arctan(4\%) - 4$

Steve Wilson, 4/25
Lawrence, KS
  4581 (5.4)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - 4! - 4$

Steve Wilson, 4/25
Lawrence, KS
4582 (5.6)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \dfrac{\antilog\sqrt{4}}{4}$

Steve Wilson, 4/25
Lawrence, KS
4583 (5.0)
$\coth\ln\coth\arcosh(44 + 4)$
$\phantom. - 4!$

Steve Wilson, 4/25
Lawrence, KS
4584 (5.6)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - \dfrac{\antilog\sqrt{4}}{4}$

Steve Wilson, 4/25
Lawrence, KS
4585 (5.0)
$\coth\ln\coth\arsinh(44 + 4)$
$\phantom. - 4!$

Steve Wilson, 4/25
Lawrence, KS
4586 (4.0)
$\dfrac{\sqrt{4} + 4\%}{.\overline{4}\pmf} - 4$
Steve Wilson, 1/25
Lawrence, KS
4587 (5.4)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - 4! + 4$

Steve Wilson, 4/25
Lawrence, KS
4588 (4.2)
$\dfrac{\sqrt{4} + 4\%}{.\overline{4}\pmf} - \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4589 (5.4)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - 4! + 4$

Steve Wilson, 4/25
Lawrence, KS
4590 (4.0)
$\dfrac{\sqrt{4} + 4\%}{.\overline{44}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
  4591 (5.2)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - 4 \times 4$

Steve Wilson, 4/25
Lawrence, KS
4592 (4.2)
$\dfrac{\sqrt{4} + 4\%}{.\overline{4}\pmf} + \sqrt{4}$
Steve Wilson, 1/25
Lawrence, KS
4593 (5.2)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - 4 \times 4$

Steve Wilson, 4/25
Lawrence, KS
4594 (4.0)
$\dfrac{\sqrt{4} + 4\%}{.\overline{4}\pmf} + 4$
Steve Wilson, 1/25
Lawrence, KS
4595 (5.6)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \dfrac{4!}{\sqrt{4}}$

Steve Wilson, 4/25
Lawrence, KS
4596 (4.0)
$\sqrt{\sqrt{4^{4!}}} + \dfrac{\sqrt{4}}{4\pmf}$
Steve Wilson, 1/25
Lawrence, KS
4597 (5.4)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \dfrac{4}{.4}$

Steve Wilson, 4/25
Lawrence, KS
4598 (5.6)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \dfrac{4}{.\overline{4}}$

Steve Wilson, 4/25
Lawrence, KS
4599 (4.0)
$\dfrac{\sqrt{4} + 44\pmf}{.\overline{4}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
4600 (4.0)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + \dfrac{4}{4\%}$
Steve Wilson, 1/25
Lawrence, KS
  4601 (5.2)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - 4 - 4$

Steve Wilson, 4/25
Lawrence, KS
4602 (5.6)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \dfrac{\sqrt{4}}{.4}$

Steve Wilson, 4/25
Lawrence, KS
4603 (4.8)
$\coth\ln\coth\arcosh(44 + 4)$
$\phantom. - 4$

Steve Wilson, 4/25
Lawrence, KS
4604 (5.6)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. - \dfrac{\sqrt{4}}{.4}$

Steve Wilson, 4/25
Lawrence, KS
4605 (4.8)
$\coth\ln\coth\arsinh(44 + 4)$
$\phantom. - 4$

Steve Wilson, 4/25
Lawrence, KS
4606 (5.2)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. - \dfrac44$

Steve Wilson, 4/25
Lawrence, KS
4607 (4.6)
$\cosh(\sqrt{4} \times \arcosh(44 + 4))$
Steve Wilson, 4/25
Lawrence, KS
4608 (3.4)
$(4 + 4) \times (4!)^{\sqrt{4}}$
Bruce Manoly, 12/24
Crescent City, CA
4609 (4.6)
$\cosh(\sqrt{4} \times \arsinh(44 + 4))$
Steve Wilson, 4/25
Lawrence, KS
4610 (5.2)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \dfrac44$

Steve Wilson, 4/25
Lawrence, KS
  4611 (4.8)
$\coth\ln\coth\arcosh(44 + 4)$
$\phantom. + 4$

Steve Wilson, 4/25
Lawrence, KS
4612 (5.6)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \dfrac{\sqrt{4}}{.4}$

Steve Wilson, 4/25
Lawrence, KS
4613 (4.8)
$\coth\ln\coth\arsinh(44 + 4)$
$\phantom. + 4$

Steve Wilson, 4/25
Lawrence, KS
4614 (4.2)
$\dfrac{\sqrt{4} + 4\%}{.\overline{4}\pmf} + 4!$
Steve Wilson, 1/25
Lawrence, KS
4615 (5.2)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + 4 + 4$

Steve Wilson, 4/25
Lawrence, KS
4616 (5.6)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \dfrac{4}{.\overline{4}}$

Steve Wilson, 4/25
Lawrence, KS
4617 (5.2)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + 4 + 4$

Steve Wilson, 4/25
Lawrence, KS
4618 (5.6)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \dfrac{4}{.\overline{4}}$

Steve Wilson, 4/25
Lawrence, KS
4619 (5.4)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \dfrac{4}{.4}$

Steve Wilson, 4/25
Lawrence, KS
4620 (4.4)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} + \left(\dfrac{\sqrt{4}}{.4}\right)!$
Steve Wilson, 1/25
Lawrence, KS
  4621 (5.6)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \dfrac{4!}{\sqrt{4}}$

Steve Wilson, 4/25
Lawrence, KS
4622 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \dfrac{\arcsec\sqrt{4}}{4^\circ}$

Steve Wilson, 4/25
Lawrence, KS
4623 (5.2)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + 4 \times 4$

Steve Wilson, 4/25
Lawrence, KS
4624 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \dfrac{\arcsec\sqrt{4}}{4^\circ}$

Steve Wilson, 4/25
Lawrence, KS
4625 (5.2)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + 4 \times 4$

Steve Wilson, 4/25
Lawrence, KS
4626 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \sqrt{\sec\arctan 4)^4}$

Steve Wilson, 4/25
Lawrence, KS
4627 (5.4)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + 4! - 4$

Steve Wilson, 4/25
Lawrence, KS
4628 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \cot\arctan(4\%) - 4$

Steve Wilson, 4/25
Lawrence, KS
4629 (5.4)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + 4! - 4$

Steve Wilson, 4/25
Lawrence, KS
4630 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \cot\arctan(4\%) - 4$

Steve Wilson, 4/25
Lawrence, KS
  4631 (5.0)
$\coth\ln\coth\arcosh(44 + 4)$
$\phantom. + 4!$

Steve Wilson, 4/25
Lawrence, KS
4632 (5.6)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \dfrac{\antilog\sqrt{4}}{4}$

Steve Wilson, 4/25
Lawrence, KS
4633 (5.0)
$\coth\ln\coth\arsinh(44 + 4)$
$\phantom. + 4!$

Steve Wilson, 4/25
Lawrence, KS
4634 (5.6)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \dfrac{\antilog\sqrt{4}}{4}$

Steve Wilson, 4/25
Lawrence, KS
4635 (4.2)
$\dfrac{\sqrt{4} + (4 + \sqrt{4})\%}{.\overline{4}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
4636 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \cot\arctan(4\%) + 4$

Steve Wilson, 4/25
Lawrence, KS
4637 (5.4)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + 4! + 4$

Steve Wilson, 4/25
Lawrence, KS
4638 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \cot\arctan(4\%) + 4$

Steve Wilson, 4/25
Lawrence, KS
4639 (5.4)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \sqrt[.4]{4}$

Steve Wilson, 4/25
Lawrence, KS
4640 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \cosh(\sqrt{4} \times \arsinh 4)$

Steve Wilson, 4/25
Lawrence, KS
  4641 (5.4)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \sqrt[.4]{4}$

Steve Wilson, 4/25
Lawrence, KS
4642 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \cosh(\sqrt{4} \times \arsinh 4)$

Steve Wilson, 4/25
Lawrence, KS
4643 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + 4! + (\antilog 4)\pm$

Steve Wilson, 4/25
Lawrence, KS
4644 (5.2)
$\dfrac{4}{\tanh\ln\coth\arsinh(4!)} + \sqrt[.4]{4}$
Steve Wilson, 7/25
Lawrence, KS
4645 (5.8)
$4 \times (\coth\ln\coth\arcosh(4!)$
$\phantom. + (\antilog 4)\pm$
$\phantom. + \cot\arctan 4)$

Steve Wilson, 7/25
Lawrence, KS
4646 (5.6)
$(\cot\arctan((\sqrt{4})\%) - 4)\%$
$\phantom. \times (\antilog 4 + \antilog\sqrt{4})$

Steve Wilson, 6/25
Lawrence, KS
4647 (5.6)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + 4\pm \times \antilog 4$

Steve Wilson, 4/25
Lawrence, KS
4648 (5.4)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \log((\antilog 44)\pm)$

Steve Wilson, 6/25
Lawrence, KS
4649 (5.6)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + 4\pm \times \antilog 4$

Steve Wilson, 4/25
Lawrence, KS
4650 (4.0)
$\dfrac{\dfrac{4}{4!\%} + 4}{.\overline{4}\%}$
Steve Wilson, 7/24
Lawrence, KS
  4651 (5.2)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + 44$

Steve Wilson, 4/25
Lawrence, KS
4652 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \dfrac{4!}{\csch\ln 4}$

Steve Wilson, 4/25
Lawrence, KS
4653 (5.2)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + 44$

Steve Wilson, 4/25
Lawrence, KS
4654 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \dfrac{4!}{\csch\ln 4}$

Steve Wilson, 4/25
Lawrence, KS
4655 (5.6)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + 4! + 4!$

Steve Wilson, 4/25
Lawrence, KS
4656 (5.6)
$\cot\arctan((\sech(\sqrt{4} \times$
$\phantom. \arcosh\sqrt{4!}))\%) - 44$

Steve Wilson, 6/25
Lawrence, KS
4657 (5.6)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \dfrac{\sqrt{4}}{4\%}$

Steve Wilson, 4/25
Lawrence, KS
4658 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \dfrac{4!}{\sech\ln 4}$

Steve Wilson, 4/25
Lawrence, KS
4659 (5.6)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \dfrac{\sqrt{4}}{4\%}$

Steve Wilson, 4/25
Lawrence, KS
4660 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \dfrac{4!}{\sech\ln 4}$

Steve Wilson, 4/25
Lawrence, KS
  4661 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \dfrac{4!}{.\overline{4}}$

Steve Wilson, 4/25
Lawrence, KS
4662 (5.4)
$\dfrac{4}{\tanh\ln\coth\arsinh(4!)}$
$\phantom. + \dfrac{\sqrt{4}}{4\%}$

Steve Wilson, 7/25
Lawrence, KS
4663 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \dfrac{4!}{.\overline{4}}$

Steve Wilson, 4/25
Lawrence, KS
4664 (5.4)
$\left(\antilog\sqrt{4} + \ln\sqrt{\sqrt{\exp(4!)}}\right)$
$\phantom. \times 44$

Steve Wilson, 6/25
Lawrence, KS
4665 (5.6)
$\dfrac{\cot\arctan((\csch\ln 4)\pm) - \dfrac{4}{.\overline{4}}\phantom.}{.4}$
Steve Wilson, 7/25
Lawrence, KS
4666 (5.8)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - \dfrac{\arcsec\sqrt{4}}{\left(.\overline{4}\right)^\circ}$

Steve Wilson, 6/25
Lawrence, KS
4667 (5.6)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \dfrac{4!}{.4}$

Steve Wilson, 4/25
Lawrence, KS
4668 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \dfrac{4}{\tanh\ln\coth\arsinh 4}$

Steve Wilson, 4/25
Lawrence, KS
4669 (5.6)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \dfrac{4!}{.4}$

Steve Wilson, 4/25
Lawrence, KS
4670 (5.6)
$\dfrac{\antilog 4}{\sqrt{4}}$
$\phantom. - \dfrac{(\antilog 4)\pmf}{\tanh\ln\coth\arsinh 4}$

Steve Wilson, 6/25
Lawrence, KS
  4671 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \coth\ln\coth\arsinh(4 + 4)$

Steve Wilson, 4/25
Lawrence, KS
4672 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \ln\sqrt{\exp(4^4)}$

Steve Wilson, 4/25
Lawrence, KS
4673 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \coth\ln\coth\arcosh(4 + 4)$

Steve Wilson, 4/25
Lawrence, KS
4674 (5.6)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - \coth\ln\coth\arcosh(4 + 4)$

Steve Wilson, 6/25
Lawrence, KS
4675 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \cot\arctan((4 + 4)\pm)$

Steve Wilson, 4/25
Lawrence, KS
4676 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \antilog\sqrt{4} - 4!$

Steve Wilson, 4/25
Lawrence, KS
4677 (4.6)
$\dfrac{\antilog 4}{4}$
$\phantom. + \cosh(4 \times \arsinh 4)$

Steve Wilson, 6/25
Lawrence, KS
4678 (5.8)
$\dfrac{\sinh\ln 4}{4\%\%} - (\antilog 4)\pm$
$\phantom. + \cot\arctan\sqrt{4}$

Steve Wilson, 7/25
Lawrence, KS
4679 (5.8)
$\dfrac{4}{\tanh\ln\coth\arsinh(4!)}$
$\phantom. + \dfrac{.4}{(\cosh\ln 4)\%}$

Steve Wilson, 7/25
Lawrence, KS
4680 (4.0)
$\dfrac{\sqrt{4} + (4 + 4)\%}{.\overline{4}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
  4681 (5.4)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - \left(\dfrac{\sqrt{4}}{.4}\right)!$

Steve Wilson, 6/25
Lawrence, KS
4682 (5.8)
$\dfrac{\sinh\ln 4}{4\%\%}$
$\phantom. - \ln\sqrt{\sqrt{\sqrt{\exp 44}}}$

Steve Wilson, 7/25
Lawrence, KS
4683 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \antilog\sqrt{4} - 4!$

Steve Wilson, 4/25
Lawrence, KS
4684 (5.6)
$\cot\arctan((\sech(\sqrt{4} \times$
$\phantom. \arcosh\sqrt{4!}))\%) - 4 \times 4$

Steve Wilson, 6/25
Lawrence, KS
4685 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \antilog\sqrt{4} - 4!$

Steve Wilson, 4/25
Lawrence, KS
4686 (5.8)
$\dfrac{\sqrt{4}}{\tanh\ln\coth\arsinh 4}$
$\phantom. \times \cosh(4 \times \arcsch\sqrt{.4})$

Steve Wilson, 6/25
Lawrence, KS
4687 (5.2)
$\dfrac{\antilog 4}{\sqrt{4}} - \dfrac{\cosh\ln(4\%)}{4\%}$
Steve Wilson, 6/25
Lawrence, KS
4688 (5.2)
$\dfrac{\antilog 4}{\sqrt{4}} + \dfrac{\sinh\ln(4\%)}{4\%}$
Steve Wilson, 6/25
Lawrence, KS
4689 (5.8)
$(\coth\ln\coth\arcosh(4! + 4)$
$\phantom. - 4) \times \coth\ln\sqrt{\sqrt{4}}$

Steve Wilson, 6/25
Lawrence, KS
4690 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \antilog\sqrt{4}$
$\phantom. - (\antilog 4)\pm$

Steve Wilson, 6/25
Lawrence, KS
  4691 (5.6)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - \antilog\sqrt{4} - (\antilog 4)\pm$

Steve Wilson, 6/25
Lawrence, KS
4692 (5.6)
$\cot\arctan((\sech(\sqrt{4} \times$
$\phantom. \arcosh\sqrt{4!}))\%) - 4 - 4$

Steve Wilson, 6/25
Lawrence, KS
4693 (5.8)
$\dfrac{\sinh\ln 4}{4\%\%} + \ln\sqrt{\sqrt{\sqrt{\exp 44}}}$
Steve Wilson, 7/25
Lawrence, KS
4694 (5.8)
$\dfrac{4}{\tanh\ln\coth\arsinh(4!)} + \dfrac{.4}{.\overline{4}\%}$
Steve Wilson, 7/25
Lawrence, KS
4695 (5.4)
$\dfrac{\arcsec\sqrt{4}}{4^\circ} \times \dfrac{\cosh\ln(4\%)}{4\%}$
Steve Wilson, 6/25
Lawrence, KS
4696 (4.0)
$\sqrt{\sqrt{4^{4!}}} + \dfrac{4!}{4\%}$
Steve Wilson, 1/25
Lawrence, KS
4697 (5.2)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - \antilog\sqrt{4} - 4$

Steve Wilson, 6/25
Lawrence, KS
4698 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \antilog\sqrt{4} - \sqrt{4}$

Steve Wilson, 4/25
Lawrence, KS
4699 (5.4)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - \antilog\sqrt{4} - \sqrt{4}$

Steve Wilson, 6/25
Lawrence, KS
4700 (3.8)
$\dfrac{4 - 4!\%}{(4 + 4)\%\%}$
Steve Wilson, 6/24
Lawrence, KS
  4701 (5.8)
$(\antilog\sqrt{4} - \antilog 4)\%$
$\phantom. + \dfrac{4!}{(\cot\arctan\sqrt{4})\%}$

Steve Wilson, 4/25
Lawrence, KS
4702 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \antilog\sqrt{4} + \sqrt{4}$

Steve Wilson, 4/25
Lawrence, KS
4703 (5.4)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + 4! \times 4$

Steve Wilson, 4/25
Lawrence, KS
4704 (5.2)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%} - 4 \times 4!$
Steve Wilson, 4/25
Lawrence, KS
4705 (5.4)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + 4! \times 4$

Steve Wilson, 4/25
Lawrence, KS
4706 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \cosh(4 \times \arcosh\sqrt{4})$

Steve Wilson, 4/25
Lawrence, KS
4707 (5.4)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \dfrac{4}{4\%}$

Steve Wilson, 4/25
Lawrence, KS
4708 (5.6)
$\cot\arctan((\sech(\sqrt{4} \times$
$\phantom. \arcosh\sqrt{4!}))\%) + 4 + 4$

Steve Wilson, 6/25
Lawrence, KS
4709 (5.4)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \dfrac{4}{4\%}$

Steve Wilson, 4/25
Lawrence, KS
4710 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%} - \dfrac{.4}{.\overline{4}\%}$
Steve Wilson, 4/25
Lawrence, KS
  4711 (5.6)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \antilog\sqrt{4} + 4$

Steve Wilson, 4/25
Lawrence, KS
4755 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \arcosh\coth\ln\coth 44$

Steve Wilson, 4/25
Lawrence, KS
4713 (5.6)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \antilog\sqrt{4} + 4$

Steve Wilson, 4/25
Lawrence, KS
4714 (5.8)
$\antilog\sqrt{4} + (\antilog 4)\pm$
$\phantom. + \dfrac{4}{\tanh\ln\coth\arsinh(4!)}$

Steve Wilson, 7/25
Lawrence, KS
4715 (5.6)
$\dfrac{\cot\arctan(4\%) - 4}{.\overline{4}\pmf}$
$\phantom. - (\antilog 4)\pm$

Steve Wilson, 7/25
Lawrence, KS
4716 (5.6)
$\cot\arctan((\sech(\sqrt{4} \times$
$\phantom. \arcosh\sqrt{4!}))\%) + 4 \times 4$

Steve Wilson, 6/25
Lawrence, KS
4717 (5.8)
$\dfrac{\log((\antilog(4!))\%\pm)\phantom.}{4\pmf}$
$\phantom. - \cosh(\sqrt{4} \times \arsinh 4)$

Steve Wilson, 6/25
Lawrence, KS
4718 (5.4)
$\dfrac{\log((\antilog(4!))\%\pm)\phantom.}{4\pmf}$
$\phantom. - \sqrt[.4]{4}$

Steve Wilson, 6/25
Lawrence, KS
4719 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \left(\coth\ln\sqrt{\sqrt{4}}\right)^4$

Steve Wilson, 4/25
Lawrence, KS
4720 (3.8)
$\dfrac{4 \times (4! - .4)}{(\sqrt{4})\%}$
Steve Wilson, 4/25
Lawrence, KS
  4721 (5.8)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - \dfrac{.4}{(\cot\arctan(.4))\%}$

Steve Wilson, 6/25
Lawrence, KS
4722 (5.4)
$\dfrac{\log((\antilog(4!))\%\pm)\phantom.}{4\pmf}$
$\phantom. - 4! - 4$

Steve Wilson, 6/25
Lawrence, KS
4723 (5.4)
$\dfrac{\cot\arctan(4\%) - 4}{.\overline{4}\pmf} - \sqrt{4}$
Steve Wilson, 7/25
Lawrence, KS
4724 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \antilog\sqrt{4} + 4!$

Steve Wilson, 4/25
Lawrence, KS
4725 (4.0)
$\dfrac{\sqrt{4} + \dfrac{.4}{4}}{.\overline{4}\pmf}$
Steve Wilson, 1/25
Lawrence, KS
4726 (5.6)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - \dfrac{.4}{(\csch\ln 4)\%}$

Steve Wilson, 6/25
Lawrence, KS
4727 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \dfrac{4!}{\sqrt{4\%}}$

Steve Wilson, 4/25
Lawrence, KS
4728 (5.8)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - \coth\ln\coth\arsinh\left(\dfrac{4!}{4}\right)$

Steve Wilson, 6/25
Lawrence, KS
4729 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \dfrac{4!}{\sqrt{4\%}}$

Steve Wilson, 4/25
Lawrence, KS
4730 (5.6)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - \cosh(4 \times \arcsch\sqrt{.4})$

Steve Wilson, 6/25
Lawrence, KS
  4731 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \antilog\sqrt{4} + 4!$

Steve Wilson, 4/25
Lawrence, KS
4732 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \cot\arctan((4 + 4)\pm)$

Steve Wilson, 4/25
Lawrence, KS
4733 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \antilog\sqrt{4} + 4!$

Steve Wilson, 4/25
Lawrence, KS
4734 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \cot\arctan((4 + 4)\pm)$

Steve Wilson, 4/25
Lawrence, KS
4735 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \ln\sqrt{\exp(4^4)}$

Steve Wilson, 4/25
Lawrence, KS
4736 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \sqrt{\sqrt{\sqrt{4^{4!}}}}$

Steve Wilson, 4/25
Lawrence, KS
4737 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \ln\sqrt{\exp(4^4)}$

Steve Wilson, 4/25
Lawrence, KS
4738 (5.6)
$\dfrac{\log((\antilog(4!))\%\pm)\phantom.}{4\pmf}$
$\phantom. - \dfrac{4!}{\sqrt{4}}$

Steve Wilson, 6/25
Lawrence, KS
4739 (5.8)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - \dfrac{\sqrt{4}}{\tanh\ln\coth\arcosh 4}$

Steve Wilson, 6/25
Lawrence, KS
4740 (5.4)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%} - \dfrac{4!}{.4}$
Steve Wilson, 4/25
Lawrence, KS
  4741 (5.2)
$\cosh(4 \times \arsinh\sqrt{4!}) - \dfrac{4!}{.4}$
Steve Wilson, 6/25
Lawrence, KS
4742 (5.2)
$\dfrac{\log((\antilog(4!))\%\pm)\phantom.}{4\pmf}$
$\phantom. - 4 - 4$

Steve Wilson, 6/25
Lawrence, KS
4743 (5.8)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - \log\left(\left(\antilog\left(\dfrac{4!}{.4}\right)\right)\%\right)$

Steve Wilson, 6/25
Lawrence, KS
4744 (5.8)
$\cosh(4 \times \arsinh\sqrt{4!}) - 4!$
$\phantom. - \coth\ln\coth\arsinh 4$

Steve Wilson, 6/25
Lawrence, KS
4745 (5.8)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. + \dfrac{4!}{\tanh\ln\sqrt{.4}}$

Steve Wilson, 6/25
Lawrence, KS
4746 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%} - \dfrac{4!}{.\overline{4}}$
Steve Wilson, 4/25
Lawrence, KS
4747 (5.4)
$\cosh(4 \times \arsinh\sqrt{4!}) - \dfrac{4!}{.\overline{4}}$
Steve Wilson, 6/25
Lawrence, KS
4748 (5.6)
$\dfrac{\sqrt{4}}{.\overline{4}\pmf} - \sqrt{4}$
$\phantom. + \cot\arctan(4\pm)$

Steve Wilson, 6/25
Lawrence, KS
4749 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \dfrac{4!}{\sech\ln 4}$

Steve Wilson, 4/25
Lawrence, KS
4750 (3.8)
$\dfrac{4 - \sqrt{4\%}}{(4 + 4)\%\%}$
Steve Wilson, 6/24
Lawrence, KS
  4751 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \cosh\left(4 \times \arsinh\sqrt{\sqrt{4}}\right)$

Steve Wilson, 4/25
Lawrence, KS
4752 (3.8)
$\dfrac{4! \times (4 - 4\%)}{(\sqrt{4})\%}$
Steve Wilson, 4/25
Lawrence, KS
4753 (5.2)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - 4! - 4!$

Steve Wilson, 6/25
Lawrence, KS
4754 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%} + 4$
$\phantom. - \cot\arctan((\sqrt{4})\%)$

Steve Wilson, 4/25
Lawrence, KS
4755 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \dfrac{4!}{\csch\ln 4}$

Steve Wilson, 4/25
Lawrence, KS
4756 (5.0)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%} - 44$
Steve Wilson, 4/25
Lawrence, KS
4757 (4.8)
$\cosh(4 \times \arsinh\sqrt{4!}) - 44$
Steve Wilson, 6/25
Lawrence, KS
4758 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \log((\antilog 44)\%)$

Steve Wilson, 6/25
Lawrence, KS
4759 (5.4)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - \log((\antilog 44)\%)$

Steve Wilson, 6/25
Lawrence, KS
4760 (4.0)
$\dfrac{4 \times (4! - \sqrt{4\%})}{(\sqrt{4})\%}$
Steve Wilson, 4/25
Lawrence, KS
  4761 (5.2)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - 4\pm \times \antilog 4$

Steve Wilson, 6/25
Lawrence, KS
4762 (5.6)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - \log((\antilog 44)\%\pm)$

Steve Wilson, 6/25
Lawrence, KS
4763 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%} - 4$
$\phantom. - \coth\ln\coth\arsinh 4$

Steve Wilson, 4/25
Lawrence, KS
4764 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%} - \dfrac{4!}{\sqrt{.\overline{4}}}$
Steve Wilson, 4/25
Lawrence, KS
4765 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%} - 4$
$\phantom. - \coth\ln\coth\arcosh 4$

Steve Wilson, 4/25
Lawrence, KS
4766 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - (\antilog 4)\pm - 4!$

Steve Wilson, 4/25
Lawrence, KS
4767 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \cosh(\sqrt{4} \times \arsinh 4)$

Steve Wilson, 4/25
Lawrence, KS
4768 (5.8)
$\coth\ln\coth\arcosh(4! + 4!)$
$\phantom. + \cosh(4 \times \arsinh\sqrt{4})$

Steve Wilson, 4/25
Lawrence, KS
4769 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \cosh(\sqrt{4} \times \arcosh 4)$

Steve Wilson, 4/25
Lawrence, KS
4770 (5.8)
$\coth\ln\coth\arsinh(4! + 4!)$
$\phantom. + \cosh(4 \times \arsinh\sqrt{4})$

Steve Wilson, 4/25
Lawrence, KS
  4771 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \cot\arctan(4\%) - 4$

Steve Wilson, 4/25
Lawrence, KS
4772 (5.2)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - 4! -4$

Steve Wilson, 4/25
Lawrence, KS
4773 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \cot\arctan(4\%) - \sqrt{4}$

Steve Wilson, 4/25
Lawrence, KS
4774 (5.4)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - 4! - \sqrt{4}$

Steve Wilson, 4/25
Lawrence, KS
4775 (5.4)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \dfrac{\antilog\sqrt{4}}{4}$

Steve Wilson, 4/25
Lawrence, KS
4776 (3.8)
$\dfrac{4 \times 4!}{(\sqrt{4})\%} - 4!$
Steve Wilson, 4/25
Lawrence, KS
4777 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \cot\arctan(4\%) + \sqrt{4}$

Steve Wilson, 4/25
Lawrence, KS
4778 (5.4)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - 4! + \sqrt{4}$

Steve Wilson, 4/25
Lawrence, KS
4779 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \cot\arctan(4\%) + 4$

Steve Wilson, 4/25
Lawrence, KS
4780 (3.8)
$\dfrac{4 \times 4! - .4}{(\sqrt{4})\%}$
Steve Wilson, 4/25
Lawrence, KS
  4781 (5.2)
$\cosh(4 \times \arsinh\sqrt{4!}) - \dfrac{4}{\sqrt{4\%}}$
Steve Wilson, 6/25
Lawrence, KS
4782 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \dfrac{4!}{\csch\ln\sqrt{4}}$

Steve Wilson, 4/25
Lawrence, KS
4783 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \sqrt{(\sec\arctan 4)^4}$

Steve Wilson, 4/25
Lawrence, KS
4784 (5.0)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%} - 4 \times 4$
Steve Wilson, 4/25
Lawrence, KS
4785 (4.8)
$\cosh(4 \times \arsinh\sqrt{4!}) - 4 \times 4$
Steve Wilson, 6/25
Lawrence, KS
4786 (5.4)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - (\antilog 4)\pm - 4$

Steve Wilson, 4/25
Lawrence, KS
4787 (5.2)
$\cosh(4 \times \arsinh\sqrt{4!})$
$\phantom. - (\antilog 4)\pm - 4$

Steve Wilson, 6/25
Lawrence, KS
4788 (5.4)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%} - \dfrac{4!}{\sqrt{4}}$
Steve Wilson, 4/25
Lawrence, KS
4789 (5.8)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%}$
$\phantom. - \ln\sqrt{\sqrt{\exp 44}}$

Steve Wilson, 4/25
Lawrence, KS
4790 (4.0)
$\dfrac{4 \times 4! - \sqrt{4\%}}{(\sqrt{4})\%}$
Steve Wilson, 4/25
Lawrence, KS
  4791 (5.4)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%} - \dfrac{4}{.\overline{4}}$
Steve Wilson, 4/25
Lawrence, KS
4792 (3.8)
$\dfrac{4 \times (4! - 4\%)}{(\sqrt{4})\%}$
Steve Wilson, 4/25
Lawrence, KS
4793 (4.8)
$\cosh(4 \times \arsinh\sqrt{4!}) - 4 - 4$
Steve Wilson, 6/25
Lawrence, KS
4794 (5.2)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%} - \dfrac{4!}{4}$
Steve Wilson, 4/25
Lawrence, KS
4795 (5.4)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%} - \dfrac{\sqrt{4}}{.4}$
Steve Wilson, 4/25
Lawrence, KS
4796 (3.6)
$\dfrac{4 \times 4!}{(\sqrt{4})\%} - 4$
Steve Wilson, 4/25
Lawrence, KS
4797 (5.6)
$\dfrac{4!}{(\cot\arctan\sqrt{4})\%} - \sqrt{\dfrac{4}{.\overline{4}}}$
Steve Wilson, 4/25
Lawrence, KS
4798 (3.8)
$\dfrac{4 \times 4!}{(\sqrt{4})\%} - \sqrt{4}$
Steve Wilson, 4/25
Lawrence, KS
4799 (4.0)
$\dfrac{4 \times 4! - (\sqrt{4})\%}{(\sqrt{4})\%}$
Steve Wilson, 4/25
Lawrence, KS
4800 (3.6)
$(4! + 4!) \times \dfrac{4}{4\%}$
Steve Wilson, 4/25
Lawrence, KS

PREVIOUS Page, Page 12 (4401-4800), NEXT Page, ... Index to All Pages.