\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator {\sech} {sech} \DeclareMathOperator {\csch} {csch} \)
This problem was proposed by Integermaniac master Ralph Jeffords. Create each of the positive integers using four copies of 9, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.
Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.
Page 1 (1-400), Page 2 (401-800), Page 3 (801+).
801 (2.6) $\dfrac{9}{.\overline{9}\%} - 99$ Steve Wilson, 5/10 Raytown, MO |
802 (4.4) $\dfrac{((\sqrt{9})!)!}{.9} + \sqrt{9} - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
803 (3.8) $\dfrac{(9 - \sqrt{9})!}{.9} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
804 (3.8) $((\sqrt{9})!)! + 9 \times 9 + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
805 (4.6) $\dfrac{((\sqrt{9})!)!}{.9} + (\sqrt{9})! - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
806 (4.0) $\dfrac{(9 - \sqrt{9})!}{.9} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
807 (4.0) $((\sqrt{9})!)! + 9 \times 9 + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
808 (4.2) $\dfrac{((\sqrt{9})!)!}{.9} + 9 - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
809 (3.0) $\dfrac{9 - .\overline{9}}{.\overline{9}\%} + 9$ Steve Wilson, 4/10 Raytown, MO |
810 (1.0) $(9 \times 9 + 9) \times 9$ Dave Jones, 2/08 Coventry, England |
|
811 (3.8) $((\sqrt{9})!)! + \dfrac{9}{9\%} - 9$ Steve Wilson, 8/23 Lawrence, KS |
812 (4.0) $\dfrac{((\sqrt{9})!)!}{.9} + 9 + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
813 (4.0) $((\sqrt{9})!)! + 99 - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
814 (4.2) $((\sqrt{9})!)! + \dfrac{9}{9\%} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
815 (4.2) $\dfrac{((\sqrt{9})!)!}{.9} + 9 + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
816 (3.8) $((\sqrt{9})!)! + 99 - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
817 (4.0) $((\sqrt{9})!)! + \dfrac{9}{9\%} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
818 (3.8) $\dfrac{((\sqrt{9})!)!}{.9} + 9 + 9$ Steve Wilson, 8/23 Lawrence, KS |
819 (2.2) $9 \times \left( \dfrac{9}{9\%} - 9 \right)$ Dave Jones, 7/08 Coventry, England |
820 (3.6) $(9 - \sqrt{9})! + \dfrac{9}{9\%}$ Steve Wilson, 8/23 Lawrence, KS |
|
821 (4.2) $((\sqrt{9})!)! + \dfrac{9 + 9\%}{9\%}$ Steve Wilson, 8/23 Lawrence, KS |
822 (3.8) $((\sqrt{9})!)! + 99 + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
823 (4.0) $((\sqrt{9})!)! + \dfrac{9}{9\%} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
825 (4.0) $((\sqrt{9})!)! + 99 + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
826 (4.2) $((\sqrt{9})!)! + \dfrac{9}{9\%} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
827 (4.0) $\dfrac{((\sqrt{9})!)!}{.9} + 9 \times \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
828 (3.6) $((\sqrt{9})!)! + 99 + 9$ Steve Wilson, 8/23 Lawrence, KS |
829 (3.4) $9^{\sqrt{9}} + \dfrac{9}{9\%}$ Steve Wilson, 8/23 Lawrence, KS |
830 (3.8) $((\sqrt{9})!)! + \dfrac{99}{.9}$ Steve Wilson, 8/23 Lawrence, KS |
||
836 (4.6) $\dfrac{((\sqrt{9})!)!}{.9} + (\sqrt{9})! \times (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
837 (3.4) $(99 - (\sqrt{9})!) \times 9$ Steve Wilson, 8/23 Lawrence, KS |
840 (4.4) $(9 - \sqrt{9})! + \dfrac{((\sqrt{9})!)!}{(\sqrt{9})!}$ Steve Wilson, 8/23 Lawrence, KS |
||||||||
846 (3.6) $\left(\dfrac{9}{9\%} - (\sqrt{9})!\right) \times 9$ Steve Wilson, 8/23 Lawrence, KS |
850 (4.4) $((\sqrt{9})!)! + \dfrac{\sqrt{9} + .9}{(\sqrt{9})\%}$ Steve Wilson, 8/23 Lawrence, KS |
|||||||||
854 (4.2) $\dfrac{((\sqrt{9})!)!}{.9} + 9 \times (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
860 (4.2) $\dfrac{((\sqrt{9})!)! + 9 \times (\sqrt{9})!}{.9}$ Steve Wilson, 8/23 Lawrence, KS |
|||||||||
864 (3.2) $(99 - \sqrt{9}) \times 9$ Steve Wilson, 8/23 Lawrence, KS |
870 (4.0) $(9 - \sqrt{9})! + \dfrac{9}{(\sqrt{9})!\%}$ Steve Wilson, 8/23 Lawrence, KS |
|||||||||
873 (3.4) $\left(\dfrac{9}{9\%} - \sqrt{9}\right) \times 9$ Steve Wilson, 8/23 Lawrence, KS |
880 (4.8) $\dfrac{.9 - (.\overline{9} + .\overline{9})\%}{.\overline{9}\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
|||||||||
881 (3.8) $\dfrac{((\sqrt{9})!)!}{.9} + 9 \times 9$ Steve Wilson, 8/23 Lawrence, KS |
882 (2.0) $9 \times 99 - 9$ Dave Jones, 7/08 Coventry, England |
884 (4.8) $\dfrac{.9 - .\overline{9}\%}{.\overline{9}\pmf} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
885 (3.4) $9 \times 99 - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
887 (4.6) $\dfrac{.9 - .\overline{9}\%}{.\overline{9}\pmf} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
888 (3.2) $9 \times 99 - \sqrt{9}$ Rabeh Ghadiri, 8/08 Overland Park, KS |
889 (4.8) $\dfrac{.9 - .\overline{9}\%}{.\overline{9}\pmf} - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
890 (2.4) $\dfrac{9 \times 9 - .9}{9\%}$ Steve Wilson, 5/10 Raytown, MO |
|||
891 (2.2) $9 \times \dfrac{9}{9\%} - 9$ Dave Jones, 7/08 Coventry, England |
892 (2.4) $99 \times 9 + .\overline{9}$ Steve Wilson, 5/10 Raytown, MO |
893 (4.6) $\dfrac{9 - .\overline{9}\%}{.\overline{9}\%} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
894 (3.2) $99 \times 9 + \sqrt{9}$ Leif Muhammad, 3/14 Kansas City, MO |
895 (4.4) $\dfrac{9}{.\overline{9}\%} - (\sqrt{9})! + .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
896 (4.4) $\dfrac{9 - .\overline{9}\%}{.\overline{9}\%} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
897 (3.4) $9 \times 99 + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
898 (3.4) $\dfrac{9}{.\overline{9}\%} - .\overline{9} - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
899 (2.4) $\dfrac{9 \times 9 - 9\%}{9\%}$ Dave Jones, 8/08 Coventry, England |
900 (2.0) $9 \times 99 + 9$ Dave Jones, 8/08 Coventry, England |
|
901 (2.4) $\dfrac{9}{.9\%} - 99$ Dave Jones, 8/08 Coventry, England |
902 (4.2) $\dfrac{9}{.\overline{9}\%} + \sqrt{9} - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
903 (3.4) $9 \times \dfrac{9}{9\%} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
904 (4.2) $\dfrac{9}{.\overline{9}\%} + \sqrt{9} + .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
905 (4.4) $\dfrac{9}{.\overline{9}\%} + (\sqrt{9})! - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
906 (3.6) $9 \times \dfrac{9}{9\%} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
907 (4.6) $\dfrac{9 + .\overline{9}\%}{.\overline{9}\%} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
908 (3.0) $\dfrac{9}{.\overline{9}\%} + 9 - .\overline{9}$ Steve Wilson, 5/10 Raytown, MO |
909 (2.2) $9 \times \dfrac{9}{9\%} + 9$ Dave Jones, 8/08 Coventry, England |
910 (2.4) $\dfrac{9 \times 9 + .9}{9\%}$ Dave Jones, 8/08 Coventry, England |
|
911 (4.8) $\dfrac{.9 + .\overline{9}\%}{.\overline{9}\pmf} + .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
912 (3.8) $\dfrac{9}{.\overline{9}\%} + 9 + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
913 (4.6) $\dfrac{.9 + .\overline{9}\%}{.\overline{9}\pmf} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
915 (4.0) $\dfrac{9}{.\overline{9}\%} + 9 + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
916 (4.8) $\dfrac{.9 + .\overline{9}\%}{.\overline{9}\pmf} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
918 (2.6) $\dfrac{9}{.\overline{9}\%} + 9 + 9$ Steve Wilson, 6/10 Raytown, MO |
919 (2.4) $\dfrac{9}{.9\%} - 9 \times 9$ Dave Jones, 9/08 Coventry, England |
920 (3.8) $((\sqrt{9})!)! + \dfrac{9 + 9}{9\%}$ Steve Wilson, 8/23 Lawrence, KS |
|||
927 (3.4) $\left(\dfrac{9}{9\%} + \sqrt{9}\right) \times 9$ Steve Wilson, 8/23 Lawrence, KS |
930 (4.0) $\dfrac{9}{.\overline{9}\%} - \dfrac{9}{\sqrt{9\%}}$ Steve Wilson, 8/23 Lawrence, KS |
|||||||||
936 (4.4) $\dfrac{9}{.\overline{9}\%} + (\sqrt{9})! \times (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
940 (3.8) $\dfrac{9 - 9\% \times (\sqrt{9})!}{9\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
|||||||||
941 (4.4) $\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} - 9$ Steve Wilson, 8/23 Lawrence, KS |
944 (4.8) $\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
945 (3.4) $(99 + (\sqrt{9})!) \times 9$ Steve Wilson, 8/23 Lawrence, KS |
946 (3.6) $\dfrac{9}{9\pmf} - 9 \times (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
947 (4.6) $\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
949 (4.8) $\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
950 (4.2) $\dfrac{9 - \sqrt{9} - \sqrt{9\%}}{(\sqrt{9})!\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
||||
951 (4.8) $\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} + .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
953 (4.6) $\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
954 (3.6) $\left(\dfrac{9}{9\%} + (\sqrt{9})!\right) \times 9$ Steve Wilson, 8/23 Lawrence, KS |
956 (4.8) $\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
959 (4.4) $\dfrac{(\sqrt{9})! - \sqrt{9\%}}{(\sqrt{9})!\pmf} + 9$ Steve Wilson, 8/23 Lawrence, KS |
960 (4.0) $\dfrac{9.9 - \sqrt{9\%}}{.\overline{9}\%}$ Steve Wilson, 8/23 Lawrence, KS |
|||||
964 (4.0) $\dfrac{9}{9\pmf} - (\sqrt{9})! \times (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
970 (3.6) $\dfrac{9 - 9\% \times \sqrt{9}}{9\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
|||||||||
972 (2.0) $(99 + 9) \times 9$ Dave Jones, 9/08 Coventry, England |
973 (3.4) $\dfrac{9}{9\pmf} - 9 \times \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
980 (2.6) $\dfrac{9 - (9 + 9)\%}{.9\%}$ Steve Wilson, 6/10 Raytown, MO |
||||||||
981 (2.2) $9 \times \left( \dfrac{9}{9\%} + 9 \right)$ Dave Jones, 9/08 Coventry, England |
982 (2.4) $\dfrac{9}{.9\%} - 9 - 9$ Dave Jones, 9/08 Coventry, England |
984 (3.8) $\dfrac{9 - 9\%}{9\pmf} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
985 (3.6) $\dfrac{9}{9\pmf} - 9 - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
987 (3.6) $\dfrac{9 - 9\%}{9\pmf} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
988 (3.4) $\dfrac{9}{9\pmf} - 9 - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
989 (2.6) $\dfrac{9 - 9.9\%}{.9\%}$ Dave Jones, 11/08 Coventry, England |
990 (2.0) $999 - 9$ Dave Jones, 10/08 Coventry, England |
|||
991 (2.8) $\dfrac{9}{.9\%} - 9 \times .\overline{9}$ Steve Wilson, 2/09 Raytown, MO |
992 (2.8) $\dfrac{9}{.9\%} - 9 + .\overline{9}$ Steve Wilson, 2/09 Raytown, MO |
993 (3.4) $999 - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
994 (3.4) $\dfrac{9}{9\pmf} - 9 + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
995 (4.0) $\dfrac{9}{9\pmf} - (\sqrt{9})! + .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
996 (3.2) $999 - \sqrt{9}$ Parker Moss, 9/12 Overland Park, KS |
997 (3.4) $\dfrac{9}{9\pmf} - \dfrac{9}{\sqrt{9}}$ Steve Wilson, 8/23 Lawrence, KS |
998 (2.4) $999 - .\overline{9}$ Steve Wilson, 6/10 Raytown, MO |
999 (2.4) $\dfrac{9}{.9\%} - \dfrac99$ Steve Wilson, 2/09 Raytown, MO |
1000 (2.2) $\dfrac{99}{9.9\%}$ Dave Jones, 10/08 Coventry, England |
|
1001 (2.4) $\dfrac{9}{.9\%} + \dfrac99$ Dave Jones, 10/08 Coventry, England |
1002 (3.0) $\dfrac{9 + (.9 + .9)\%}{.9\%}$ Steve Wilson, 6/10 Raytown, MO |
1003 (3.4) $\dfrac{9}{9\pmf} + \dfrac{9}{\sqrt{9}}$ Steve Wilson, 8/23 Lawrence, KS |
1004 (3.8) $\dfrac{9 + 9\%}{9\pmf} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1005 (3.4) $999 + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1006 (3.4) $\dfrac{9}{9\pmf} + 9 - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1007 (3.6) $\dfrac{9 + 9\%}{9\pmf} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1008 (2.0) $999 + 9$ Jeremy Miller, 11/07 Olathe, KS |
1009 (2.8) $\dfrac{9 + 9 \times .9\%}{.9\%}$ Steve Wilson, 6/10 Raytown, MO |
1010 (2.6) $\dfrac{9}{.9\%} + 9.\overline{9}$ Steve Wilson, 2/09 Raytown, MO |
|
1011 (2.6) $\dfrac{9 + 9.9\%}{.9\%}$ Dave Jones, 10/08 Coventry, England |
1012 (3.4) $\dfrac{9}{9\pmf} + 9 + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1013 (3.6) $\dfrac{9 + 9\%}{9\pmf} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1015 (3.6) $\dfrac{9}{9\pmf} + 9 + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1016 (3.8) $\dfrac{9 + 9\%}{9\pmf} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1018 (2.4) $\dfrac{9}{.9\%} + 9 + 9$ Dave Jones, 10/08 Coventry, England |
1019 (2.6) $\dfrac{9 + 9\%}{.9\%} + 9$ Dave Jones, 11/08 Coventry, England |
1020 (2.6) $\dfrac{9 + (9+9)\%}{.9\%}$ Dave Jones, 11/08 Coventry, England |
|||
1027 (3.4) $\dfrac{9}{9\pmf} + 9 \times \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1030 (3.6) $\dfrac{9 + 9\% \times \sqrt{9}}{9\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
|||||||||
1036 (4.0) $\dfrac{9}{9\pmf} + (\sqrt{9})! \times (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
||||||||||
1050 (4.2) $\dfrac{9 - \sqrt{9} + \sqrt{9\%}}{(\sqrt{9})!\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
||||||||||
1054 (3.6) $\dfrac{9}{9\pmf} + 9 \times (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1060 (3.8) $\dfrac{9 + 9\% \times (\sqrt{9})!}{9\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
|||||||||
1062 (4.8) $9 \times (99 - \coth\ln\sqrt{.9})$ Steve Wilson, 8/23 Lawrence, KS |
||||||||||
1080 (2.8) $\dfrac{9.9 + .9}{.\overline{9}\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1081 (2.4) $\dfrac{9}{.9\%} + 9 \times 9$ Dave Jones, 11/08 Coventry, England |
1089 (4.8) $99 \times (9 - \log(.\overline{9}\%))$ Steve Wilson, 8/23 Lawrence, KS |
1090 (2.4) $\dfrac{99 - .9}{9\%}$ Dave Jones, 11/08 Coventry, England |
||||||||
1091 (2.2) $\dfrac{99}{9\%} - 9$ Amy Koger, 9/08 Fort Scott, KS |
1094 (3.6) $\dfrac{99}{9\%} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1097 (3.4) $\dfrac{99}{9\%} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1099 (2.4) $\dfrac{9}{.9\%} + 99$ Dave Jones, 12/08 Coventry, England |
1100 (2.6) $\dfrac{99}{9\%} \times .\overline{9}$ Steve Wilson, 2/09 Raytown, MO |
||||||
1101 (2.4) $\dfrac{99 + 9\%}{9\%}$ Dave Jones, 12/08 Coventry, England |
1103 (3.4) $\dfrac{99}{9\%} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1106 (3.6) $\dfrac{99}{9\%} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1109 (2.2) $\dfrac{99}{9\%} + 9$ Amy Koger, 9/08 Fort Scott, KS |
1110 (2.2) $\dfrac{999}{.9}$ Dave Jones, 12/08 Coventry, England |
||||||
1111 (2.8) $\dfrac{9 - 9\%\%}{9\% \times 9\%}$ Steve Wilson, 10/11 Raytown, MO |
1116 (3.0) $\dfrac{.9}{(9 - .\overline{9})\%\%} - 9$ Steve Wilson, 10/11 Raytown, MO |
1119 (4.0) $\dfrac{9}{(9 - .\overline{9})\pmf} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
||||||||
1122 (3.8) $\dfrac{9}{(9 - .\overline{9})\pmf} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1124 (3.4) $\dfrac{.9}{(9 - .\overline{9})\%\%} - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
1125 (2.6) $\dfrac{9}{\left(.9 - \dfrac{.9}{9}\right)\%}$ Steve Wilson, 8/23 Lawrence, KS |
1126 (3.4) $\dfrac{.9}{(9 - .\overline{9})\%\%} + .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
1128 (3.8) $\dfrac{9}{(9 - .\overline{9})\pmf} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
||||||
1131 (4.0) $\dfrac{9}{(9 - .\overline{9})\pmf} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1134 (3.0) $\dfrac{.9}{(9 - .\overline{9})\%\%} + 9$ Steve Wilson, 10/11 Raytown, MO |
|||||||||
1188 (3.2) $99 \times (9 + \sqrt{9})$ Steve Wilson, 8/23 Lawrence, KS |
1190 (4.8) $\dfrac{.9 + \sqrt{9\%} - .\overline{9}\%}{.\overline{9}\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
|||||||||
1191 (3.8) $\dfrac{9 + \sqrt{9}}{.\overline{9}\%} - 9$ Steve Wilson, 8/23 Lawrence, KS |
1194 (4.2) $\dfrac{9 + \sqrt{9}}{.\overline{9}\%} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1197 (4.0) $\dfrac{9 + \sqrt{9}}{.\overline{9}\%} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1199 (4.2) $\dfrac{9 + \sqrt{9}}{.\overline{9}\%} - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
1200 (2.2) $\dfrac{99 + 9}{9\%}$ Dave Jones, 12/08 Coventry, England |
||||||
1201 (4.2) $\dfrac{9 + \sqrt{9}}{.\overline{9}\%} + .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
1203 (4.0) $\dfrac{9 + \sqrt{9}}{.\overline{9}\%} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1206 (4.2) $\dfrac{9 + \sqrt{9}}{.\overline{9}\%} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1209 (3.8) $\dfrac{9 + \sqrt{9}}{.\overline{9}\%} + 9$ Steve Wilson, 8/23 Lawrence, KS |
1210 (4.8) $\dfrac{.9 + \sqrt{9\%} + .\overline{9}\%}{.\overline{9}\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
||||||
1220 (3.8) $((\sqrt{9})!)! + \dfrac{9}{(9 + 9)\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
||||||||||
1241 (3.2) $\dfrac{.\overline{9}}{(9 - .\overline{9})\%\%} - 9$ Steve Wilson, 8/23 Lawrence, KS |
1244 (4.6) $\dfrac{.\overline{9}}{(9 - .\overline{9})\%\%} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1247 (4.4) $\dfrac{.\overline{9}}{(9 - .\overline{9})\%\%} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1249 (3.6) $\dfrac{.\overline{9}}{(9 - .\overline{9})\%\%} - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
1250 (2.4) $\dfrac{9}{(9 \times 9 - 9)\%\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||
1251 (3.6) $\dfrac{.\overline{9}}{(9 - .\overline{9})\%\%} + .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
1253 (4.4) $\dfrac{.\overline{9}}{(9 - .\overline{9})\%\%} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1256 (4.6) $\dfrac{.\overline{9}}{(9 - .\overline{9})\%\%} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1259 (3.2) $\dfrac{.\overline{9}}{(9 - .\overline{9})\%\%} + 9$ Steve Wilson, 8/23 Lawrence, KS |
|||||||
1280 (3.8) $\dfrac{9 + 9}{9\pmf} - ((\sqrt{9})!)!$ Steve Wilson, 8/23 Lawrence, KS |
||||||||||
1458 (1.0) $(9 + 9) \times 9 \times 9$ Levi Self, 5/08 San Antonio, TX |
||||||||||
1485 (3.4) $99 \times (9 + (\sqrt{9})!)$ Steve Wilson, 8/23 Lawrence, KS |
||||||||||
1491 (4.0) $\dfrac{9 + (\sqrt{9})!}{.\overline{9}\%} - 9$ Steve Wilson, 8/23 Lawrence, KS |
1494 (4.4) $\dfrac{9 + (\sqrt{9})!}{.\overline{9}\%} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1497 (4.2) $\dfrac{9 + (\sqrt{9})!}{.\overline{9}\%} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1499 (4.4) $\dfrac{9 + (\sqrt{9})!}{.\overline{9}\%} - .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
1500 (3.6) $\dfrac{9}{9\%} \times (9 + (\sqrt{9})!)$ Steve Wilson, 8/23 Lawrence, KS |
||||||
1501 (4.4) $\dfrac{9 + (\sqrt{9})!}{.\overline{9}\%} + .\overline{9}$ Steve Wilson, 8/23 Lawrence, KS |
1503 (4.2) $\dfrac{9 + (\sqrt{9})!}{.\overline{9}\%} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1506 (4.4) $\dfrac{9 + (\sqrt{9})!}{.\overline{9}\%} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1509 (4.0) $\dfrac{9 + (\sqrt{9})!}{.\overline{9}\%} + 9$ Steve Wilson, 8/23 Lawrence, KS |
|||||||
1548 (4.8) $9 - \dfrac{9 \times 9}{\tanh\ln\sqrt{.9}}$ Steve Wilson, 8/23 Lawrence, KS |
||||||||||
1620 (2.8) $(9 + 9) \times \dfrac{.9}{.\overline{9}\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1700 (3.0) $\dfrac{9 + 9 - .\overline{9}}{.\overline{9}\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1710 (2.8) $\dfrac{9 + 9 \times .9}{.\overline{9}\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1782 (2.0) $(9 + 9) \times 99$ Dave Jones, 1/09 Coventry, England |
||||||||||
1790 (4.6) $\dfrac{.9 + .9 - .\overline{9}\%}{.\overline{9}\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
||||||||||
1791 (2.6) $\dfrac{9 + 9}{.\overline{9}\%} - 9$ Steve Wilson, 10/11 Raytown, MO |
1794 (4.0) $\dfrac{9 + 9}{.\overline{9}\%} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1797 (3.8) $\dfrac{9 + 9}{.\overline{9}\%} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1799 (3.0) $\dfrac{9 + 9}{.\overline{9}\%} - .\overline{9}$ Steve Wilson, 10/11 Raytown, MO |
1800 (2.2) $(9 + 9) \times \dfrac{9}{9\%}$ Dave Jones, 1/09 Coventry, England |
||||||
1801 (3.0) $\dfrac{9 + 9}{.\overline{9}\%} + .\overline{9}$ Steve Wilson, 11/11 Raytown, MO |
1803 (3.8) $\dfrac{9 + 9}{.\overline{9}\%} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1806 (4.0) $\dfrac{9 + 9}{.\overline{9}\%} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1809 (2.6) $\dfrac{9 + 9}{.\overline{9}\%} + 9$ Steve Wilson, 11/11 Raytown, MO |
1810 (4.6) $\dfrac{.9 + .9 + .\overline{9}\%}{.\overline{9}\pmf}$ Steve Wilson, 8/23 Lawrence, KS |
||||||
1890 (2.6) $\dfrac{9.9 + 9}{.\overline{9}\%}$ Steve Wilson, 11/11 Raytown, MO |
||||||||||
1900 (2.6) $\dfrac{9 + 9 - .9}{.9\%}$ Dave Jones, 1/09 Coventry, England |
||||||||||
1990 (2.6) $\dfrac{9 + 9 - 9\%}{.9\%}$ Dave Jones, 1/09 Coventry, England |
||||||||||
1991 (2.4) $\dfrac{9 + 9}{.9\%} - 9$ Dave Jones, 1/09 Coventry, England |
1994 (3.6) $\dfrac{9 + 9}{9\pmf} - (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
1997 (3.4) $\dfrac{9 + 9}{9\pmf} - \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
1999 (2.8) $\dfrac{9 + 9 - .9\%}{.9\%}$ Steve Wilson, 11/11 Raytown, MO |
2000 (2.8) $\dfrac{9}{.9\%} + \dfrac{9}{.9\%}$ Dave Jones, 2/09 Coventry, England |
||||||
2001 (2.8) $\dfrac{9 + 9 + .9\%}{.9\%}$ Steve Wilson, 11/11 Raytown, MO |
2003 (3.4) $\dfrac{9 + 9}{9\pmf} + \sqrt{9}$ Steve Wilson, 8/23 Lawrence, KS |
2006 (3.6) $\dfrac{9 + 9}{9\pmf} + (\sqrt{9})!$ Steve Wilson, 8/23 Lawrence, KS |
2009 (2.4) $\dfrac{9 + 9}{.9\%} + 9$ Dave Jones, 2/09 Coventry, England |
2010 (2.6) $\dfrac{9 + 9 + 9\%}{.9\%}$ Dave Jones, 2/09 Coventry, England |
||||||
2100 (2.4) $\dfrac{9.9 + 9}{.9\%}$ Dave Jones, 2/09 Coventry, England |
||||||||||
2187 (3.2) $9 \times 9 \times 9 \times \sqrt{9}$ Harman Tiwana, 10/12 Lenexa, KS |
||||||||||
2673 (3.2) $99 \times 9 \times \sqrt{9}$ Zach Warring, 11/09 Olathe, Kansas |
||||||||||
2700 (2.6) $\dfrac{9 + 9 + 9}{.\overline{9}\%}$ Steve Wilson, 11/11 Raytown, MO |
||||||||||
3000 (2.4) $\dfrac{9 + 9 + 9}{.9\%}$ Dave Jones, 2/09 Coventry, England |
||||||||||
4050 (3.0) $\dfrac{9 \times 9}{(.\overline{9} + .\overline{9})\%}$ Steve Wilson, 11/11 Raytown, MO |
||||||||||
4471 (3.2) $\dfrac{9!}{9 \times 9} - 9$ Zach Warring, 11/09 Olathe, Kansas |
||||||||||
4489 (3.2) $\dfrac{9!}{9 \times 9} + 9$ Zach Warring, 11/09 Olathe, Kansas |
||||||||||
4500 (2.6) $\dfrac{9}{(.9 + .9)\%} \times 9$ Dave Jones, 4/09 Coventry, England |
||||||||||
5500 (2.6) $\dfrac{99}{(.9 + .9)\%}$ Dave Jones, 4/09 Coventry, England |
||||||||||
6552 (3.2) $9^{\sqrt{9}} \times 9 - 9$ Chelsea Kiddle, 11/12 Leawood, KS |
||||||||||
6561 (1.0) $9 \times 9 \times 9 \times 9$ Jeremy Miller, 11/07 Olathe, KS |
6570 (3.2) $9^{\sqrt{9}} \times 9 + 9$ Chelsea Kiddle, 11/12 Leawood, KS |
|||||||||
8000 (2.4) $\dfrac{9 \times 9 - 9}{.9\%}$ Dave Jones, 4/09 Coventry, England |
||||||||||
8019 (2.0) $99 \times 9 \times 9$ Dave Jones, 4/09 Coventry, England |
||||||||||
8100 (2.2) $9 \times 9 \times \dfrac{9}{9\%}$ Dave Jones, 4/09 Coventry, England |
||||||||||
8991 (2.0) $999 \times 9$ Regina Hillman, 12/07 Bucyrus, KS |
||||||||||
9801 (2.0) $99 \times 99$ Brooke Atkinson, 4/09 Olathe, KS |
||||||||||
13431 (3.4) $\dfrac{9!}{9 \times \sqrt{9}} - 9$ Zach Warring, 11/09 Olathe, Kansas |
13440 (3.4) $\dfrac{9!}{9} \times \dfrac{\sqrt{9}}{9}$ Tyler Cox, 12/09 Olathe, Kansas |
|||||||||
13449 (3.4) $\dfrac{9!}{9 \times \sqrt{9}} + 9$ Zach Warring, 11/09 Olathe, Kansas |
||||||||||
40320 (3.2) $\dfrac{9!}{9} \times \dfrac99$ Rabeh Ghadiri, 12/08 Overland Park, KS |
||||||||||
40401 (3.2) $\dfrac{9!}{9} + 9 \times 9$ Chad Ojeda, 9/08 Overland Park, KS |
||||||||||
44800 (3.4) $\dfrac{ \dfrac{9!}{9} + 9!}{9}$ Nicole Bunch, 2/09 Kansas City, MO |
||||||||||
241920 (3.6) $(\sqrt{9} + \sqrt{9}) \times \dfrac{9!}{9}$ Rabeh Ghadiri, 11/08 Overland Park, KS |
||||||||||
362853 (3.2) $9! - 9 - 9 - 9$ Nicole Bunch, 2/09 Kansas City, MO |
||||||||||
362871 (3.2) $9! + 9 - 9 - 9$ Nicole Bunch, 2/09 Kansas City, MO |
||||||||||
362881 (3.2) $\dfrac{9! \times 9 + 9}{9}$ Rabeh Ghadiri, 10/08 Overland Park, KS |
362889 (3.2) $9! + 9 \times \dfrac99$ Nicole Bunch, 2/09 Kansas City, MO |
|||||||||
403200 (3.4) $\dfrac{9! \times 9 + 9!}{9}$ Nicole Bunch, 2/09 Kansas City, MO |
||||||||||
3265920 (3.2) $9! \times 9 \times \dfrac99$ Nicole Bunch, 2/09 Kansas City, MO |
||||||||||
3628791 (3.2) $9! \times 9 + 9! - 9$ Nicole Bunch, 2/09 Kansas City, MO |
||||||||||
14348907 (3.2) $\dfrac{9^9}{9 \times \sqrt{9}}$ Chad Ojeda, 9/08 Overland Park, KS |
||||||||||
32332608 (3.4) $99 \times .9 \times 9!$ Nicole Bunch, 2/09 Kansas City, MO |
||||||||||
32651712 (3.2) $99.9 \times 9!$ Nicole Bunch, 2/09 Kansas City, MO |
||||||||||
32659200 (3.4) $(9! \times 9 + 9!) \times 9$ Nicole Bunch, 2/09 Kansas City, MO |
||||||||||
43046712 (3.0) $\dfrac{9^9}{9} - 9$ Kashmira Sayani, 1/17 Overland Park, KS |
||||||||||
387420390 (3.0) $9^9 - 99$ Kashmira Sayani, 4/17 Overland Park, KS |
||||||||||
387420408 (3.0) $9^9 - 9 \times 9$ Lisa Fisher, 7/09 Lawrence, KS |
||||||||||
387420570 (3.0) $9^9 + 9 \times 9$ Lisa Fisher, 7/09 Lawrence, KS |
||||||||||
387420588 (3.0) $9^9 + 99$ Lisa Fisher, 7/09 Lawrence, KS |
||||||||||
129140163 (3.2) $9^9 \times \dfrac{\sqrt{9}}{9}$ Tyler Cox, 12/09 Olathe, Kansas |
||||||||||
1162261467 (3.2) $9^9 \times \dfrac{9}{\sqrt{9}}$ Chad Ojeda, 9/08 Overland Park, KS |
||||||||||
googol (3.4) $\left( \dfrac{9}{.9} \right) ^{9/(9\%)}$ Paolo Pellegrini, 5/08 Martina Franca, Italy |
||||||||||
googolplex (4.4) $9.\overline{9}^{\left( \sqrt[-(\sqrt{9})\%]{ .\overline{9}\pmf} \right)}$ Ralph Jeffords, 3/09 Centreville, VA |
Page 1 (1-400), Page 2 (401-800), Page 3 (801+).