\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \)

Integermania!

Jan Hus

Jan Hus was a church reformer who lived and worked in Prague, but was executed on 6 July 1415 by the church authorities because of his teachings. If we write this date in European format, ignoring the century, we have the date 6.7.15. Using one copy each of the digits 1, 5, 6, and 7, and any standard operations, create each of the positive integers. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201+)

. . . .
  1 (1.0)
$\dfrac{7 + 5}{6} - 1$
Steve Wilson, 9/17
Lawrence, KS
2 (1.0)
$\dfrac{7 + 5}{6} \times 1$
Dana Reigle, 9/17
Prague, Czechia
3 (1.0)
$5 + 6 - 7 - 1$
Dana Reigle, 9/17
Prague, Czechia
4 (1.0)
$5 \times 1 + 6 - 7$
Dana Reigle, 9/17
Prague, Czechia
5 (1.0)
$(7 - 6) \times 1 \times 5$
Ralph Jeffords, 9/17
Centreville, VA
6 (1.0)
$6 \times (7 - 5 - 1)$
Ralph Jeffords, 9/17
Centreville, VA
7 (1.0)
$6 - 5 - 1 + 7$
Dana Reigle, 9/17
Prague, Czechia
8 (1.0)
$1 \times 6 + 7 - 5$
Kenneth Chapman, 10/17
Santa Paula, CA
9 (1.0)
$1 + 6 + 7 - 5$
Kenneth Chapman, 10/17
Santa Paula, CA
10 (1.0)
$(7 - 5) \times (6 - 1)$
Dana Reigle, 9/17
Prague, Czechia
  11 (1.0)
$6 \times (7 - 5) - 1$
Ralph Jeffords, 10/17
Centreville, VA
12 (1.0)
$6 \times (7 \times 1 - 5)$
Kenneth Chapman, 10/17
Santa Paula, CA
13 (1.0)
$6 \times (7 - 5) + 1$
Ralph Jeffords, 10/17
Centreville, VA
14 (1.0)
$(1 + 6) \times (7 - 5)$
Kenneth Chapman, 10/17
Santa Paula, CA
15 (1.0)
$\dfrac{6}{ \dfrac75 - 1}$
Paolo Pellegrini, 1/18
Martina Franca, Italy
16 (2.0)
$17 - 6 + 5$
Ralph Jeffords, 10/17
Centreville, VA
17 (1.0)
$5 + 6 + 7 - 1$
Kenneth Chapman, 10/17
Santa Paula, CA
18 (1.0)
$7 \times 1 + 5 + 6$
Dana Reigle, 10/17
Prague, Czechia
19 (1.0)
$1 + 5 + 6 + 7$
Jared Chumbley, 9/17
Prague, Czechia
20 (2.2)
$\dfrac{7 + 5}{.6 \times 1}$
Ralph Jeffords, 10/17
Centreville, VA
  21 (1.0)
$\dfrac{6}{1 - \dfrac57}$
Ralph Jeffords, 2/18
Centreville, VA
22 (1.0)
$5 \times 6 - 7 - 1$
Jared Chumbley, 9/17
Prague, Czechia
23 (1.0)
$1 \times 5 \times 6 - 7$
Kenneth Chapman, 11/17
Santa Paula, CA
24 (1.0)
$6 \times 5 - 7 + 1$
Dana Reigle, 10/17
Prague, Czechia
25 (2.0)
$76 - 51$
Dana Reigle, 11/17
Prague, Czechia
26 (2.0)
$61 - 7 \times 5$
Ralph Jeffords, 11/17
Centreville, VA
27 (2.0)
$7 \times 6 - 15$
Steve Wilson, 2/18
Lawrence, KS
28 (1.0)
$5 \times 7 - 6 - 1$
Jared Chumbley, 9/17
Prague, Czechia
29 (1.0)
$(1 + 5) \times 6 - 7$
Kenneth Chapman, 11/17
Santa Paula, CA
30 (1.0)
$5 \times 7 + 1 - 6$
Kenneth Chapman, 11/17
Santa Paula, CA
  31 (1.0)
$(5 - 1) \times 6 + 7$
Ralph Jeffords, 11/17
Centreville, VA
32 (1.0)
$5 \times (6 - 1) + 7$
Paolo Pellegrini, 1/18
Martina Franca, Italy
33 (2.0)
$5 \times (7.6 - 1)$
Steve Wilson, 4/19
Lawrence, KS
34 (1.0)
$(1 + 7) \times 5 - 6$
Kenneth Chapman, 11/17
Santa Paula, CA
35 (1.0)
$\dfrac{7}{ \dfrac65 - 1}$
Paolo Pellegrini, 1/18
Martina Franca, Italy
36 (1.0)
$6 \times 5 - 1 + 7$
Dana Reigle, 10/17
Prague, Czechia
37 (1.0)
$1 \times 5 \times 6 + 7$
Kenneth Chapman, 11/17
Santa Paula, CA
38 (1.0)
$6 \times 5 + 1 + 7$
Dana Reigle, 10/17
Prague, Czechia
39 (2.0)
$56 - 17$
Ralph Jeffords, 11/17
Centreville, VA
40 (1.0)
$7 \times 5 + 6 - 1$
Dana Reigle, 11/17
Prague, Czechia
  41 (1.0)
$7 \times 5 + 6 \times 1$
Ralph Jeffords, 11/17
Centreville, VA
42 (1.0)
$5 \times 7 + 1 + 6$
Dana Reigle, 10/17
Prague, Czechia
43 (1.0)
$6 \times (5 + 1) + 7$
Ralph Jeffords, 12/17
Centreville, VA
44 (1.0)
$7 \times (6 + 1) - 5$
Ralph Jeffords, 1/18
Centreville, VA
45 (2.0)
$7.5 \times 6 \times 1$
Ralph Jeffords, 2/18
Centreville, VA
46 (1.0)
$(7 + 1) \times 5 + 6$
Ralph Jeffords, 12/17
Centreville, VA
47 (1.0)
$7 \times 6 \times 1 + 5$
Dana Reigle, 12/17
Prague, Czechia
48 (1.0)
$7 \times 6 + 5 + 1$
Dana Reigle, 12/17
Prague, Czechia
49 (2.0)
$56 - 7 \times 1$
Steve Wilson, 4/19
Lawrence, KS
50 (2.0)
$51 - 7 + 6$
Ralph Jeffords, 2/18
Centreville, VA
  51 (2.0)
$51 \times (7 - 6)$
Ralph Jeffords, 1/18
Centreville, VA
52 (1.0)
$(7 + 6) \times (5 - 1)$
Dana Reigle, 12/17
Prague, Czechia
53 (1.0)
$(7 + 1) \times 6 + 5$
Dana Reigle, 12/17
Prague, Czechia
54 (1.0)
$7 \times (6 + 1) + 5$
Ralph Jeffords, 1/18
Centreville, VA
55 (2.0)
$5 \times (17 - 6)$
Ralph Jeffords, 1/18
Centreville, VA
56 (2.0)
$7 \times 5 \times 1.6$
Dana Reigle, 1/18
Prague, Czechia
57 (2.0)
$7 \times 6 + 15$
Steve Wilson, 2/18
Lawrence, KS
58 (2.0)
$65 - 7 \times 1$
Steve Wilson, 4/19
Lawrence, KS
59 (2.0)
$61 - 7 + 5$
Ralph Jeffords, 2/18
Centreville, VA
60 (1.0)
$(7 + 6 - 1) \times 5$
Dana Reigle, 1/18
Prague, Czechia
  61 (2.0)
$76 - 15$
Ruth Turnau, 11/17
Prague, Czechia
62 (2.0)
$67 \times 1 - 5$
Dana Reigle, 2/18
Prague, Czechia
63 (2.0)
$67 - 5 + 1$
Dana Reigle, 2/18
Prague, Czechia
64 (1.0)
$(7 + 6) \times 5 - 1$
Ruth Turnau, 11/17
Prague, Czechia
65 (1.0)
$(7 + 6) \times 5 \times 1$
Dana Reigle, 1/18
Prague, Czechia
66 (1.0)
$(7 + 6) \times 5 + 1$
Ruth Turnau, 11/17
Prague, Czechia
67 (2.4)
$\dfrac{7 - (5 \times 6)\%}{.1}$
Paolo Pellegrini, 3/18
Martina Franca, Italy
68 (2.0)
$75 - 6 - 1$
Paolo Pellegrini, 3/18
Martina Franca, Italy
69 (2.0)
$75 \times 1 - 6$
Dana Reigle, 2/18
Prague, Czechia
70 (1.0)
$(5 + 6 - 1) \times 7$
Dana Reigle, 1/18
Prague, Czechia
  71 (1.0)
$(7 + 5) \times 6 - 1$
Dana Reigle, 1/18
Prague, Czechia
72 (1.0)
$(5 + 7) \times 1 \times 6$
Dana Reigle, 2/18
Prague, Czechia
73 (1.0)
$(5 + 7) \times 6 + 1$
Dana Reigle, 2/18
Prague, Czechia
74 (2.2)
$76 - \dfrac{1}{.5}$
Paolo Pellegrini, 3/18
Martina Franca, Italy
75 (2.2)
$\dfrac{6}{(15 - 7)\%}$
Paolo Pellegrini, 3/18
Martina Franca, Italy
76 (1.0)
$(5 + 6) \times 7 - 1$
Paolo Pellegrini, 3/18
Martina Franca, Italy
77 (1.0)
$(6 + 5) \times 7 \times 1$
Dana Reigle, 3/18
Prague, Czechia
78 (1.0)
$(7 + 5 + 1) \times 6$
Dana Reigle, 3/18
Prague, Czechia
79 (2.0)
$17 \times 5 - 6$
Ralph Jeffords, 4/18
Centreville, VA
80 (2.0)
$76 + 5 - 1$
Ralph Jeffords, 3/18
Centreville, VA
  81 (2.0)
$76 + 5 \times 1$
Ralph Jeffords, 3/18
Centreville, VA
82 (2.0)
$67 + 15$
Ruth Turnau, 3/18
Prague, Czechia
83 (2.0)
$15 \times 6 - 7$
Dana Reigle, 3/18
Prague, Czechia
84 (1.0)
$(5 + 7) \times (6 + 1)$
Dana Reigle, 3/18
Prague, Czechia
85 (2.2)
$7 \times \dfrac{6}{.5} + 1$
Steve Wilson, 4/19
Lawrence, KS
86 (2.2)
$\dfrac{6 - 1.7}{5\%}$
Ralph Jeffords, 8/18
Centreville, VA
87 (2.0)
$16 \times 5 + 7$
Dana Reigle, 3/18
Prague, Czechia
88 (1.0)
$(7 + 1) \times (6 + 5)$
Dana Reigle, 4/18
Prague, Czechia
89 (2.4)
$\dfrac{6}{.\overline{1}} + 7 \times 5$
Ralph Jeffords, 4/18
Centreville, VA
90 (2.2)
$\left( \dfrac{7}{.5} + 1 \right) \times 6$
Steve Wilson, 4/19
Lawrence, KS
  91 (2.0)
$76 + 15$
Ruth Turnau, 3/18
Prague, Czechia
92 (2.2)
$\dfrac{5}{.1} + 7 \times 6$
Ralph Jeffords, 4/18
Centreville, VA
93 (2.0)
$51 + 7 \times 6$
Ralph Jeffords, 4/18
Centreville, VA
94 (2.2)
$\dfrac{57}{.6} - 1$
Ralph Jeffords, 10/18
Centreville, VA
95 (2.2)
$\dfrac{6}{.1} + 7 \times 5$
Ralph Jeffords, 5/18
Centreville, VA
96 (2.0)
$61 + 7 \times 5$
Ralph Jeffords, 5/18
Centreville, VA
97 (2.0)
$15 \times 6 + 7$
Dana Reigle, 4/18
Prague, Czechia
98 (2.2)
$(1 + 6) \times \dfrac{7}{.5}$
Ralph Jeffords, 8/18
Centreville, VA
99 (2.0)
$15 \times 7 - 6$
Dana Reigle, 4/18
Prague, Czechia
100 (2.2)
$\dfrac{7}{.1} + 5 \times 6$
Ralph Jeffords, 7/18
Centreville, VA
  101 (2.0)
$71 + 5 \times 6$
Ruth Turnau, 3/18
Prague, Czechia
102 (2.4)
$\dfrac{5 + 7}{.\overline{1}} - 6$
Ralph Jeffords, 9/18
Centreville, VA
103 (2.2)
$\dfrac{6}{5\%} - 17$
Ralph Jeffords, 7/18
Centreville, VA
104 (2.2)
$16 \times (7 - .5)$
Steve Wilson, 5/19
Lawrence, KS
105 (2.0)
$17.5 \times 6$
Dana Reigle, 4/18
Prague, Czechia
106 (2.4)
$\dfrac{6 \times 1 - .7}{5\%}$
Ralph Jeffords, 7/18
Centreville, VA
107 (2.0)
$16 \times 7 - 5$
Dana Reigle, 4/18
Prague, Czechia
108 (2.2)
$\dfrac{61 - 7}{.5}$
Ralph Jeffords, 11/18
Centreville, VA
109 (2.8)
$\dfrac{.7}{.\overline{6}\%} + 5 - 1$
Steve Wilson, 5/19
Lawrence, KS
110 (2.2)
$\dfrac{71 - 5}{.6}$
Ralph Jeffords, 11/18
Centreville, VA
  111 (2.0)
$15 \times 7 + 6$
Dana Reigle, 6/18
Prague, Czechia
112 (2.2)
$\dfrac{6}{5\%} - 7 - 1$
Steve Wilson, 5/19
Lawrence, KS
113 (2.2)
$\dfrac{6}{5\%} - 7 \times 1$
Ralph Jeffords, 9/18
Centreville, VA
114 (2.0)
$76 \times 1.5$
Dana Reigle, 5/18
Prague, Czechia
115 (2.0)
$(17 + 6) \times 5$
Dana Reigle, 5/18
Prague, Czechia
116 (2.4)
$\dfrac{7 - (5 - 1)\%}{6\%}$
Steve Wilson, 5/19
Lawrence, KS
117 (2.0)
$16 \times 7 + 5$
Dana Reigle, 5/18
Prague, Czechia
118 (2.0)
$67 + 51$
Ralph Jeffords, 6/18
Centreville, VA
119 (2.4)
$\dfrac{7}{.\overline{1}} + 56$
Ralph Jeffords, 9/18
Centreville, VA
120 (2.0)
$16 \times 7.5$
Dana Reigle, 5/18
Prague, Czechia
  121 (2.4)
$76 + \dfrac{5}{.\overline{1}}$
Ralph Jeffords, 10/18
Centreville, VA
122 (2.0)
$61 \times (7 - 5)$
Steve Wilson, 5/19
Lawrence, KS
123 (2.8)
$\dfrac{6.\overline{1}}{5\%} + .\overline{7}$
Paolo Pellegrini, 1/18
Martina Franca, Italy
124 (2.2)
$\dfrac{75}{.6} - 1$
Dana Reigle, 8/18
Northumberland, PA
125 (2.2)
$\dfrac{6 + 7}{.1} - 5$
Ralph Jeffords, 8/18
Centreville, VA
126 (2.2)
$\dfrac{75}{.6} + 1$
Dana Reigle, 8/18
Northumberland, PA
127 (2.0)
$76 + 51$
Steve Wilson, 8/18
Lawrence, KS
128 (2.2)
$\dfrac{6}{5\%} + 7 + 1$
Steve Wilson, 6/19
Lawrence, KS
129 (2.2)
$\dfrac{6.1}{5\%} + 7$
Ralph Jeffords, 9/18
Centreville, VA
130 (2.2)
$\dfrac{71 - 6}{.5}$
Ralph Jeffords, 11/18
Centreville, VA
  131 (2.8)
$\dfrac{.7}{.\overline{5}\%} + 6 - 1$
Ralph Jeffords, 12/18
Centreville, VA
132 (2.0)
$(17 + 5) \times 6$
Dana Reigle, 7/18
Northumberland, PA
133 (2.2)
$\dfrac{67}{.5} - 1$
Ralph Jeffords, 10/18
Centreville, VA
134 (2.2)
$67 \times \dfrac{1}{.5}$
Ralph Jeffords, 10/18
Centreville, VA
135 (2.2)
$75 + \dfrac{6}{.1}$
Dana Reigle, 9/18
Grove City, PA
136 (2.0)
$75 + 61$
Steve Wilson, 8/18
Lawrence, KS
137 (2.2)
$\dfrac{6}{5\%} + 17$
Ralph Jeffords, 12/18
Centreville, VA
138 (2.6)
$\dfrac{1}{.\overline{5}\%} - 7 \times 6$
Steve Wilson, 6/19
Lawrence, KS
139 (2.4)
$\dfrac{7 - 5\%}{(6 - 1)\%}$
Steve Wilson, 6/19
Lawrence, KS
140 (2.2)
$\dfrac{7 - 5.6}{1\%}$
Steve Wilson, 6/19
Lawrence, KS
  141 (2.4)
$\dfrac{7 + 5\%}{(6 - 1)\%}$
Steve Wilson, 7/19
Lawrence, KS
142 (2.8)
$\dfrac{.7}{.\overline{5}\%} + 16$
Ralph Jeffords, 12/18
Centreville, VA
143 (2.2)
$\dfrac{6}{(5 - 1)\%} - 7$
Steve Wilson, 7/19
Lawrence, KS
144 (2.4)
$\dfrac{7 - .1}{5\%} + 6$
Ralph Jeffords, 12/18
Centreville, VA
145 (2.2)
$\dfrac{7}{5\%} + 6 - 1$
Steve Wilson, 11/18
Lawrence, KS
146 (2.2)
$\dfrac{7}{5\%} + 6 \times 1$
Steve Wilson, 11/18
Lawrence, KS
147 (2.0)
$7 \times (6 + 15)$
Dana Reigle, 10/18
Grove City, PA
148 (2.2)
$\dfrac{71}{.5} + 6$
Steve Wilson, 11/18
Lawrence, KS
149 (2.0)
$156 - 7$
Steve Wilson, 7/19
Lawrence, KS
150 (2.2)
$\dfrac{1.5}{(7 - 6)\%}$
Steve Wilson, 7/19
Lawrence, KS
  151 (2.0)
$157 - 6$
Dana Reigle, 9/18
Grove City, PA
152 (2.2)
$\dfrac{76}{.5} \times 1$
Steve Wilson, 11/18
Lawrence, KS
153 (2.2)
$\dfrac{76}{.5} + 1$
Steve Wilson, 11/18
Lawrence, KS
154 (2.2)
$\dfrac{76 + 1}{.5}$
Dana Reigle, 5/19
Northumberland, PA
155 (2.6)
$\dfrac{ \dfrac{7}{.\overline{6}} + 5}{.1}$
Steve Wilson, 7/19
Lawrence, KS
156 (2.2)
$\dfrac{7}{5\%} + 16$
Steve Wilson, 8/19
Lawrence, KS
157 (2.2)
$\dfrac{6}{(5 - 1)\%} + 7$
Steve Wilson, 8/19
Lawrence, KS
158 (2.0)
$165 - 7$
Steve Wilson, 8/19
Lawrence, KS
159 (2.8)
$\dfrac{1 - \dfrac{.7}{6}}{.\overline{5}\%}$
Steve Wilson, 8/19
Lawrence, KS
160 (2.4)
$\dfrac{7 - .6}{(5 - 1)\%}$
Steve Wilson, 8/19
Lawrence, KS
  161 (3.2)
$5! + 7 \times 6 - 1$
Steve Wilson, 6/19
Lawrence, KS
162 (2.0)
$167 - 5$
Dana Reigle, 10/18
Grove City, PA
163 (2.0)
$157 + 6$
Dana Reigle, 10/18
Grove City, PA
164 (2.8)
$\dfrac{1}{.\overline{6}\%} + \dfrac{7}{.5}$
Steve Wilson, 10/19
Lawrence, KS
165 (3.2)
$\dfrac{.7 + .5 - .1}{.\overline{6}\%}$
Steve Wilson, 10/19
Lawrence, KS
166 (2.2)
$\dfrac{7 + 1}{5\%} + 6$
Steve Wilson, 10/19
Lawrence, KS
167 (2.6)
$\dfrac{1}{.\overline{5}\%} - 7 - 6$
Steve Wilson, 10/19
Lawrence, KS
168 (1.0)
$(5 - 1) \times 6 \times 7$
Steve Wilson, 8/18
Lawrence, KS
169 (2.0)
$175 - 6$
Dana Reigle, 11/18
Grove City, PA
170 (2.2)
$\dfrac{1.7}{(6 - 5)\%}$
Steve Wilson, 10/19
Lawrence, KS
  171 (2.0)
$176 - 5$
Dana Reigle, 11/18
Grove City, PA
172 (2.0)
$167 + 5$
Dana Reigle, 11/18
Grove City, PA
173 (3.4)
$5! + \dfrac{6}{.1} - 7$
Steve Wilson, 11/19
Lawrence, KS
174 (2.6)
$\dfrac{1 - (6 + 7)\%}{.5\%}$
Steve Wilson, 11/19
Lawrence, KS
175 (1.0)
$7 \times (6 - 1) \times 5$
Steve Wilson, 6/18
Lawrence, KS
176 (3.4)
$\sqrt{\sqrt[.5]{176}}$
Steve Wilson, 11/19
Lawrence, KS
177 (3.2)
$(6 - 1)! + 57$
Steve Wilson, 8/20
Lawrence, KS
178 (2.6)
$\dfrac{ \dfrac{6}{.\overline{5}} + 7}{.1}$
Steve Wilson, 11/19
Lawrence, KS
179 (2.6)
$\dfrac{1}{.\overline{5}\%} + 6 - 7$
Steve Wilson, 11/19
Lawrence, KS
180 (1.0)
$(7 - 1) \times 6 \times 5$
Steve Wilson, 6/18
Lawrence, KS
  181 (2.0)
$176 + 5$
Dana Reigle, 12/18
Northumberland, PA
182 (2.2)
$\left( \dfrac{1}{5\%} + 6 \right) \times 7$
Steve Wilson, 2/20
Lawrence, KS
183 (2.6)
$\dfrac{6}{5\%} + \dfrac{7}{.\overline{1}}$
Steve Wilson, 2/20
Lawrence, KS
184 (3.4)
$5! + \dfrac{7}{.1} - 6$
Steve Wilson, 8/20
Lawrence, KS
185 (2.6)
$\dfrac{1}{.\overline{6}\%} + 5 \times 7$
Steve Wilson, 2/20
Lawrence, KS
186 (2.6)
$\dfrac{ \dfrac{7}{.\overline{5}} + 6}{.1}$
Steve Wilson, 2/20
Lawrence, KS
187 (2.0)
$17 \times (6 + 5)$
Dana Reigle, 12/18
Northumberland, PA
188 (3.2)
$5! + 67 + 1$
Steve Wilson, 2/20
Lawrence, KS
189 (2.6)
$\dfrac{.5 \times 6 \times 7}{.\overline{1}}$
Steve Wilson, 4/20
Lawrence, KS
190 (2.2)
$\dfrac{7.6}{(5 - 1)\%}$
Steve Wilson, 4/20
Lawrence, KS
  191 (2.2)
$\dfrac{6}{5\%} + 71$
Steve Wilson, 4/20
Lawrence, KS
192 (2.0)
$16 \times (7 + 5)$
Dana Reigle, 1/19
Northumberland, PA
193 (2.6)
$\dfrac{1}{.\overline{5}\%} + 6 + 7$
Steve Wilson, 4/20
Lawrence, KS
194 (2.2)
$\dfrac{7 - 5}{1\%} - 6$
Steve Wilson, 4/20
Lawrence, KS
195 (2.0)
$15 \times (7 + 6)$
Dana Reigle, 1/19
Northumberland, PA
196 (3.2)
$5! + 76 \times 1$
Steve Wilson, 5/20
Lawrence, KS
197 (3.2)
$5! + 76 + 1$
Steve Wilson, 5/20
Lawrence, KS
198 (2.6)
$\dfrac{7 - 6 - 1\%}{.5\%}$
Steve Wilson, 5/20
Lawrence, KS
199 (2.2)
$\dfrac{5 + 7}{6\%} - 1$
Steve Wilson, 5/20
Lawrence, KS
200 (2.2)
$\dfrac{5 + 7}{6\%} \times 1$
Steve Wilson, 5/20
Lawrence, KS
  201 (2.2)
$\dfrac{5 + 7}{6\%} + 1$
Steve Wilson, 6/20
Lawrence, KS
202 (2.6)
$\dfrac{7 - 6 + 1\%}{.5\%}$
Steve Wilson, 6/20
Lawrence, KS
203 (1.0)
$7 \times (5 \times 6 - 1)$
Dana Reigle, 2/19
Grove City, PA
204 (1.0)
$6 \times (7 \times 5 - 1)$
Dana Reigle, 2/19
Grove City, PA
205 (1.0)
$5 \times (7 \times 6 - 1)$
Dana Reigle, 2/19
Grove City, PA
206 (2.2)
$\dfrac{7 - 5}{1\%} + 6$
Steve Wilson, 6/20
Lawrence, KS
207 (2.2)
$5 \times 6 \times (7 - .1)$
Steve Wilson, 6/20
Lawrence, KS
208 (2.6)
$\dfrac{1 + 7\%}{.5\%} - 6$
Steve Wilson, 6/20
Lawrence, KS
209 (1.0)
$7 \times 6 \times 5 - 1$
Steve Wilson, 6/18
Lawrence, KS
210 (1.0)
$6 \times 7 \times 1 \times 5$
Steve Wilson, 6/18
Lawrence, KS
  211 (1.0)
$7 \times 6 \times 5 + 1$
Steve Wilson, 6/18
Lawrence, KS
212 (2.8)
$\dfrac{ \dfrac{7}{.\overline{6}} + .1}{5\%}$
Steve Wilson, 7/20
Lawrence, KS
213 (2.0)
$5 \times 6 \times 7.1$
Steve Wilson, 7/20
Lawrence, KS
214 (3.4)
$\dfrac{6!}{5} + \dfrac{7}{.1}$
Steve Wilson, 7/20
Lawrence, KS
215 (1.0)
$(6 \times 7 + 1) \times 5$
Dana Reigle, 3/19
Grove City, PA
216 (1.0)
$(5 \times 7 + 1) \times 6$
Dana Reigle, 3/19
Grove City, PA
217 (1.0)
$(5 \times 6 + 1) \times 7$
Dana Reigle, 3/19
Grove City, PA
218 (2.6)
$\dfrac{1.5}{.\overline{6}\%} - 7$
Steve Wilson, 7/20
Lawrence, KS
219 (2.6)
$\dfrac{1 + 6\%}{.5\%} + 7$
Steve Wilson, 7/20
Lawrence, KS
220 (2.2)
$\dfrac{17 - 6}{5\%}$
Steve Wilson, 8/20
Lawrence, KS
  221 (3.2)
$\sqrt{6^{7-1}} + 5$
Jonathan Frank, 6/21
Rye, NY
222 (2.6)
$\dfrac{1}{.\overline{5}\%} + 6 \times 7$
Steve Wilson, 8/20
Lawrence, KS
223 (3.4)
$\sqrt{7^6} - 1 \times 5!$
Jonathan Frank, 6/21
Rye, NY
224 (2.2)
$\dfrac{16 \times 7}{.5}$
Dana Reigle, 9/19
Grove City, PA
225 (2.4)
$\dfrac{1}{(7 - 6.\overline{5})\%}$
Steve Wilson, 8/20
Lawrence, KS
226 (2.6)
$\dfrac{1 + (6 + 7)\%}{.5\%}$
Steve Wilson, 9/20
Lawrence, KS
227 (3.4)
$6! - \dfrac{5}{1\%} + 7$
Steve Wilson, 6/22
Lawrence, KS
228 (2.4)
$\left( \dfrac{5}{.\overline{1}} - 7 \right) \times 6$
Steve Wilson, 9/20
Lawrence, KS
229 (3.2)
$\dfrac{.\overline{1}}{.\overline{5}\%} + 6.\overline{7}$
Steve Wilson, 6/22
Lawrence, KS
230 (2.2)
$\dfrac{5 \times 6 - 7}{.1}$
Steve Wilson, 9/20
Lawrence, KS
  231 (2.8)
$\dfrac{.5}{(1 - .\overline{7})\%} + 6$
Steve Wilson, 9/20
Lawrence, KS
232 (2.6)
$\dfrac{1.5}{.\overline{6}\%} + 7$
Steve Wilson, 9/20
Lawrence, KS
233 (2.6)
$\dfrac{7 - 1\%}{6 \times .5\%}$
Steve Wilson, 10/20
Lawrence, KS
234 (2.6)
$\dfrac{7 + 6}{.1 \times .\overline{5}\%}$
Steve Wilson, 10/20
Lawrence, KS
235 (2.4)
$\dfrac{\dfrac{7}{5\%} + 1}{.6}$
Steve Wilson, 10/20
Lawrence, KS
236 (3.4)
$7! \times 5\% - 16$
Steve Wilson, 1/22
Lawrence, KS
237 (3.6)
$5! + \dfrac{7 + 6}{.\overline{1}}$
Steve Wilson, 7/22
Lawrence, KS
238 (2.4)
$51 \times 6 \times .\overline{7}$
Steve Wilson, 10/20
Lawrence, KS
239 (4.6)
$6 - 7 - 5! \times \log(1\%)$
Steve Wilson, 10/22
Lawrence, KS
240 (1.0)
$(7 + 1) \times 6 \times 5$
Steve Wilson, 1/19
Lawrence, KS
  241 (4.6)
$7 - 6 - 5! \times \log(1\%)$
Steve Wilson, 10/22
Lawrence, KS
242 (2.4)
$\dfrac{1}{.5\%} + 6 \times 7$
Dana Reigle, 7/20
Northumberland, PA
243 (2.2)
$\dfrac{15}{6\%} - 7$
Steve Wilson, 10/20
Lawrence, KS
244 (3.8)
$(6! + 7 + 5) \times \sqrt{.\overline{1}}$
Steve Wilson, 1/22
Lawrence, KS
245 (1.0)
$7 \times (6 + 1) \times 5$
Steve Wilson, 1/19
Lawrence, KS
246 (2.8)
$\dfrac{ \dfrac{.7}{.\overline{1}} + 6}{5\%}$
Steve Wilson, 11/20
Lawrence, KS
247 (2.6)
$\dfrac{1}{.\overline{5}\%}+ 67$
Steve Wilson, 11/20
Lawrence, KS
248 (2.8)
$\dfrac{ \dfrac{.6}{.\overline{1}} + 7}{5\%}$
Steve Wilson, 11/20
Lawrence, KS
249 (3.2)
$\sqrt[.5]{16} - 7$
Steve Wilson, 11/20
Lawrence, KS
250 (2.2)
$\dfrac{5}{(7 - 6 + 1)\%}$
Steve Wilson, 11/20
Lawrence, KS
  251 (3.4)
$\dfrac{7!}{5!} \times 6 - 1$
Jacob Heasley, 5/21
York, PA
252 (1.0)
$7 \times 6 \times (5 + 1)$
Steve Wilson, 1/19
Lawrence, KS
253 (3.4)
$\dfrac{7!}{5!} \times 6 + 1$
Jacob Heasley, 5/21
York, PA
254 (3.4)
$\dfrac{(6 - 1)! + 7}{.5}$
Steve Wilson, 1/22
Lawrence, KS
255 (3.6)
$765 \times \sqrt{.\overline{1}}$
Steve Wilson, 10/21
Lawrence, KS
256 (2.6)
$\dfrac{1}{.\overline{5}\%} + 76$
Steve Wilson, 12/20
Lawrence, KS
257 (2.2)
$\dfrac{15}{6\%} + 7$
Steve Wilson, 12/20
Lawrence, KS
258 (2.2)
$\left( \dfrac{5}{.1} - 7 \right) \times 6$
Steve Wilson, 12/20
Lawrence, KS
259 (2.2)
$\dfrac{7 + 6}{5\%} - 1$
Dana Reigle, 8/20
Grove City, PA
260 (2.2)
$\dfrac{7 + 6}{5\%} \times 1$
Dana Reigle, 9/20
Grove City, PA
  261 (2.2)
$\dfrac{7 + 6}{5\%} + 1$
Dana Reigle, 10/20
Grove City, PA
262 (2.2)
$\dfrac{7 + 6.1}{5\%}$
Steve Wilson, 12/20
Lawrence, KS
263 (2.4)
$\dfrac{5 \times 6}{.\overline{1}} - 7$
Steve Wilson, 12/20
Lawrence, KS
264 (2.0)
$(51 - 7) \times 6$
Dana Reigle, 4/19
Northumberland, PA
265 (2.2)
$5 \times \left( \dfrac{6}{.1} - 7 \right)$
Steve Wilson, 2/21
Lawrence, KS
266 (3.8)
$7 \times (5! - 6) \times \sqrt{.\overline{1}}$
Steve Wilson, 1/22
Lawrence, KS
267 (2.4)
$\dfrac{1}{.5\%} + 67$
Steve Wilson, 2/21
Lawrence, KS
268 (2.0)
$67 \times (5 - 1)$
Steve Wilson, 2/21
Lawrence, KS
269 (3.2)
$\dfrac{.6}{(.\overline{7} - .\overline{5})\%} - 1$
Steve Wilson, 11/22
Lawrence, KS
270 (2.0)
$5 \times (61 - 7)$
Steve Wilson, 2/21
Lawrence, KS
  271 (3.2)
$\dfrac{.6}{(.\overline{7} - .\overline{5})\%} + 1$
Steve Wilson, 11/22
Lawrence, KS
272 (4.0)
$6! \times (.\overline{7} - .5 + .1)$
Steve Wilson, 11/22
Lawrence, KS
273 (2.4)
$7 \times \left( \dfrac{5}{.\overline{1}} - 6 \right)$
Steve Wilson, 2/21
Lawrence, KS
274 (3.8)
$5! \times 7 \times \sqrt{.\overline{1}} - 6$
Steve Wilson, 1/22
Lawrence, KS
275 (2.4)
$\dfrac{17 - .5}{6\%}$
Steve Wilson, 3/21
Lawrence, KS
276 (2.4)
$\dfrac{1}{.5\%} + 76$
Steve Wilson, 3/21
Lawrence, KS
277 (2.4)
$\dfrac{5 \times 6}{.\overline{1}} + 7$
Steve Wilson, 3/21
Lawrence, KS
278 (3.6)
$\sqrt[\sqrt{.\overline{1}}]{7} - 65$
Steve Wilson, 2/22
Lawrence, KS
279 (4.0)
$5 \times \left( 7!\% + \dfrac{.6}{.\overline{1}} \right)$
Steve Wilson, 11/22
Lawrence, KS
280 (2.2)
$\dfrac{7 + 6 + 1}{5\%}$
Dana Reigle, 11/20
Northumberland, PA
  281 (2.6)
$\dfrac{1.6}{.\overline{5}\%} - 7$
Steve Wilson, 3/21
Lawrence, KS
282 (3.4)
$(7!\% + 6) \times 5 \times 1$
Steve Wilson, 2/22
Lawrence, KS
283 (3.2)
$\sqrt[.5]{17} - 6$
Steve Wilson, 3/21
Lawrence, KS
284 (2.6)
$\dfrac{1 + 7 \times 6\%}{.5\%}$
Steve Wilson, 4/21
Lawrence, KS
285 (2.0)
$57 \times (6 - 1)$
Steve Wilson, 4/21
Lawrence, KS
286 (2.8)
$\dfrac{ \dfrac{1}{.\overline{6}\%} - 7}{.5}$
Steve Wilson, 4/21
Lawrence, KS
287 (3.2)
$5! +167$
Steve Wilson, 7/22
Lawrence, KS
288 (2.6)
$(7 - .6) \times \dfrac{5}{.\overline{1}}$
Steve Wilson, 4/21
Lawrence, KS
289 (3.4)
$\dfrac{7!}{5} - 6! + 1$
Jonathan Frank, 8/21
Rye, NY
290 (2.2)
$\dfrac{5 \times 7 - 6}{.1}$
Steve Wilson, 5/21
Lawrence, KS
  291 (3.6)
$\sqrt[\sqrt{.\overline{1}}]{6} + 75$
Steve Wilson, 6/23
Lawrence, KS
292 (3.2)
$\sqrt{7^6} - 51$
Jonathan Frank, 6/21
Rye, NY
293 (2.2)
$\dfrac{6 \times 5}{.1} - 7$
Dana Reigle, 8/19
Grove City, PA
294 (3.2)
$6 \times 7^{1/.5}$
Steve Wilson, 4/21
Lawrence, KS
295 (2.4)
$\dfrac{6 - .1}{(7 - 5)\%}$
Steve Wilson, 6/21
Lawrence, KS
296 (3.2)
$5! + 176$
Steve Wilson, 7/22
Lawrence, KS
297 (3.8)
$6! \times \sqrt{.\overline{1}} + 57$
Steve Wilson, 12/22
Lawrence, KS
298 (2.0)
$5 \times 61 - 7$
Steve Wilson, 5/21
Lawrence, KS
299 (2.0)
$51 \times 6 - 7$
Dana Reigle, 10/19
Grove City, PA
300 (2.2)
$\dfrac{6}{(7 - 5) \times 1\%}$
Jonathan Frank, 5/21
Rye, NY
  301 (2.2)
$\dfrac{6}{(7 - 5)\%} + 1$
Steve Wilson, 5/21
Lawrence, KS
302 (2.8)
$\dfrac{1.6\overline{7}}{.\overline{5}\%}$
Steve Wilson, 5/21
Lawrence, KS
303 (3.6)
$7! \times (5 + 1)\% + .6$
Steve Wilson, 6/23
Lawrence, KS
304 (2.0)
$76 \times (5 - 1)$
Dana Reigle, 11/19
Grove City, PA
305 (2.2)
$\dfrac{6.1}{(7 - 5)\%}$
Steve Wilson, 5/21
Lawrence, KS
306 (2.4)
$\dfrac{16 - .7}{5\%}$
Steve Wilson, 6/21
Lawrence, KS
307 (2.2)
$\dfrac{6 \times 5}{.1} + 7$
Steve Wilson, 6/21
Lawrence, KS
308 (2.2)
$7 \times \left(\dfrac{5}{.1} - 6 \right)$
Steve Wilson, 6/21
Lawrence, KS
309 (2.4)
$\dfrac{5 \times 7}{.\overline{1}} - 6$
Steve Wilson, 6/21
Lawrence, KS
310 (2.6)
$\dfrac{1 - 7\%}{5\% \times 6\%}$
Steve Wilson, 7/21
Lawrence, KS
  311 (4.6)
$\sqrt{7^6} + (\log(1\%))^5$
Steve Wilson, 12/22
Lawrence, KS
312 (2.0)
$61 \times 5 + 7$
Steve Wilson, 7/21
Lawrence, KS
313 (2.0)
$51 \times 6 + 7$
Dana Reigle, 12/19
Northumberland, PA
314 (2.8)
$\dfrac{ \dfrac{1}{.\overline{6}\%} + 7}{.5}$
Steve Wilson, 7/21
Lawrence, KS
315 (2.0)
$(51 - 6) \times 7$
Steve Wilson, 7/21
Lawrence, KS
316 (4.0)
$6! \times (.1 + .\overline{7}) \times .5$
Steve Wilson, 12/22
Lawrence, KS
317 (4.4)
$\dfrac{.6}{.\overline{5}\% \times \sqrt{.\overline{1}}} - 7$
Steve Wilson, 10/22
Lawrence, KS
318 (2.8)
$\left( \dfrac{7}{.\overline{1}} + .6 \right) \times 5$
Steve Wilson, 7/21
Lawrence, KS
319 (3.4)
$\sqrt{7^6} - (5 - 1)!$
Steve Wilson, 2/22
Lawrence, KS
320 (2.2)
$5 \times \left( \dfrac{7}{.1} - 6 \right)$
Steve Wilson, 8/21
Lawrence, KS
  321 (2.4)
$5 \times \dfrac{7}{.\overline{1}} + 6$
Jonathan Frank, 8/21
Rye, NY
322 (4.8)
$\sqrt{7^6} - \cot\arctan(5\%) - 1$
Steve Wilson, 12/22
Lawrence, KS
323 (2.4)
$51 \times (7 - .\overline{6})$
Steve Wilson, 8/21
Lawrence, KS
324 (2.8)
$(1 - .7) \times \dfrac{6}{.\overline{5}\%}$
Steve Wilson, 8/21
Lawrence, KS
325 (2.0)
$(71 - 6) \times 5$
Jonathan Frank, 6/21
Rye, NY
326 (2.8)
$\dfrac{1.\overline{7}}{.\overline{5}\%} + 6$
Steve Wilson, 8/21
Lawrence, KS
327 (2.2)
$\dfrac{16}{5\%} + 7$
Dana Reigle, 2/21
Grove City, PA
328 (2.4)
$\dfrac{17 - .6}{5\%}$
Steve Wilson, 8/21
Lawrence, KS
329 (3.6)
$6! \times .\overline{5} - 71$
Steve Wilson, 12/22
Lawrence, KS
330 (2.0)
$5 \times (67 - 1)$
Steve Wilson, 10/21
Lawrence, KS
  331 (2.8)
$\dfrac{1 - .7\%}{5\% \times 6\%}$
Steve Wilson, 9/21
Lawrence, KS
332 (3.6)
$\sqrt[\sqrt{.\overline{1}}]{7} - 6 - 5$
Steve Wilson, 2/22
Lawrence, KS
333 (2.4)
$\dfrac{5 \times 6 + 7}{.\overline{1}}$
Steve Wilson, 9/21
Lawrence, KS
334 (2.0)
$67 \times 5 - 1$
Dana Reigle, 3/21
Grove City, PA
335 (2.0)
$67 \times 5 \times 1$
Dana Reigle, 3/21
Grove City, PA
336 (2.0)
$67 \times 5 + 1$
Dana Reigle, 3/21
Grove City, PA
337 (2.6)
$\dfrac{6}{1.\overline{7}\%} - .5$
Steve Wilson, 9/21
Lawrence, KS
338 (2.6)
$\dfrac{6}{1.\overline{7}\%} + .5$
Steve Wilson, 9/21
Lawrence, KS
339 (3.2)
$\sqrt{7^6} - 5 + 1$
Jonathan Frank, 7/21
Rye, NY
340 (2.0)
$(67 + 1) \times 5$
Steve Wilson, 9/21
Lawrence, KS
  341 (2.0)
$57 \times 6 - 1$
Dana Reigle, 2/20
Northumberland, PA
342 (2.0)
$57 \times 6 \times 1$
Dana Reigle, 3/20
Northumberland, PA
343 (2.0)
$57 \times 6 + 1$
Dana Reigle, 4/20
Northumberland, PA
344 (2.2)
$\dfrac{7 \times 5}{.1} - 6$
Jonathan Frank, 9/21
Rye, NY
345 (2.4)
$5 \times \left( 6 + \dfrac{7}{.\overline{1}} \right)$
Steve Wilson, 10/21
Lawrence, KS
346 (2.2)
$\dfrac{17}{5\%} + 6$
Dana Reigle, 12/20
Northumberland, PA
347 (2.4)
$\dfrac{5}{.1} \times (7 - 6\%)$
Steve Wilson, 10/21
Lawrence, KS
348 (2.0)
$(57 + 1) \times 6$
Dana Reigle, 8/21
Grove City, PA
349 (2.0)
$5 \times 71 - 6$
Steve Wilson, 11/21
Lawrence, KS
350 (2.2)
$\dfrac{1 + 6}{(7 - 5)\%}$
Steve Wilson, 11/21
Lawrence, KS
  351 (2.0)
$51 \times 7 - 6$
Dana Reigle, 5/20
Northumberland, PA
352 (2.2)
$\dfrac{176}{.5}$
Steve Wilson, 11/21
Lawrence, KS
353 (2.4)
$(7 + 6\%) \times \dfrac{5}{.1}$
Steve Wilson, 11/21
Lawrence, KS
354 (2.8)
$\dfrac{1}{(.\overline{7} - .5)\%} - 6$
Steve Wilson, 11/21
Lawrence, KS
355 (3.6)
$\sqrt{7^6} + 5! \times .1$
Steve Wilson, 2/22
Lawrence, KS
356 (2.2)
$\dfrac{5 \times 7}{.1} + 6$
Jacob Heasley, 8/21
Grove City, PA
357 (2.4)
$\left( \dfrac{5}{.\overline{1}} + 6 \right) \times 7$
Jonathan Frank, 9/21
Rye, NY
358 (2.0)
$5 \times 71.6$
Steve Wilson, 12/21
Lawrence, KS
359 (3.2)
$\dfrac{6!}{7 - 5} - 1$
Jacob Heasley, 5/21
York, PA
360 (2.6)
$(1 - .7) \times \dfrac{6}{.5\%}$
Steve Wilson, 12/21
Lawrence, KS
  361 (2.0)
$5 \times 71 + 6$
Steve Wilson, 12/21
Lawrence, KS
362 (4.6)
$\dfrac{6!}{7 - 5} - \log(1\%)$
Steve Wilson, 1/23
Lawrence, KS
363 (2.0)
$51 \times 7 + 6$
Dana Reigle, 6/20
Grove City, PA
364 (3.4)
$(6! + 7 + 1) \times .5$
Steve Wilson, 3/22
Lawrence, KS
365 (3.4)
$6! - 71 \times 5$
Jonathan Frank, 5/21
Rye, NY
366 (2.8)
$\dfrac{1}{(.\overline{7} - .5)\%} + 6$
Steve Wilson, 12/21
Lawrence, KS
367 (3.4)
$6! \times .5 + 7 \times 1$
Steve Wilson, 3/22
Lawrence, KS
368 (3.4)
$6! \times .5 + 7 + 1$
Steve Wilson, 3/22
Lawrence, KS
369 (2.4)
$\dfrac{5 \times 7 + 6}{.\overline{1}}$
Steve Wilson, 12/21
Lawrence, KS
370 (2.2)
$\dfrac{5 \times 6 + 7}{.1}$
Steve Wilson, 4/22
Lawrence, KS
  371 (4.8)
$76 \times 5 - \cot\arctan(.\overline{1})$
Steve Wilson, 1/23
Lawrence, KS
372 (3.6)
$7! \times 5\% + (6 - 1)!$
Steve Wilson, 3/22
Lawrence, KS
373 (2.4)
$7 \times \dfrac{6}{.\overline{1}} - 5$
Jonathan Frank, 12/21
Rye, NY
374 (2.8)
$\dfrac{.5}{.\overline{1}\%} - 76$
Steve Wilson, 4/22
Lawrence, KS
375 (2.0)
$(76 - 1) \times 5$
Dana Reigle, 5/21
Northumberland, PA
376 (4.6)
$76 \times 5 + \log(1\%\%)$
Steve Wilson, 1/23
Lawrence, KS
377 (3.4)
$6! \times .5 + 17$
Steve Wilson, 3/22
Lawrence, KS
378 (2.8)
$\dfrac{7}{.\overline{1} - \dfrac{.\overline{5}}{6}}$
Steve Wilson, 10/21
Lawrence, KS
379 (2.0)
$76 \times 5 - 1$
Jonathan Frank, 4/21
Rye, NY
380 (2.0)
$76 \times 5 \times 1$
Jonathan Frank, 4/21
Rye, NY
  381 (2.0)
$76 \times 5 + 1$
Jonathan Frank, 4/21
Rye, NY
382 (3.6)
$\sqrt{ \dfrac{5^6}{.\overline{1}}} + 7$
Steve Wilson, 4/22
Lawrence, KS
383 (2.4)
$7 \times \dfrac{6}{.\overline{1}} + 5$
Jonathan Frank, 12/21
Rye, NY
384 (4.0)
$\dfrac{7 - .6}{5\% \times \sqrt{.\overline{1}}}$
Steve Wilson, 10/22
Lawrence, KS
385 (2.0)
$(76 + 1) \times 5$
Dana Reigle, 5/21
Northumberland, PA
386 (4.6)
$76 \times 5 - \log(1\pm\pm)$
Steve Wilson, 1/23
Lawrence, KS
387 (4.8)
$76 \times 5 - \log(1\%\%\pm)$
Steve Wilson, 1/23
Lawrence, KS
388 (3.6)
$\sqrt{7^6} + \dfrac{5}{.\overline{1}}$
Steve Wilson, 4/22
Lawrence, KS
389 (2.8)
$\dfrac{.6}{.\overline{15}\%} - 7$
Steve Wilson, 4/22
Lawrence, KS
390 (2.0)
$65 \times (7 - 1)$
Dana Reigle, 5/21
Northumberland, PA
  391 (2.0)
$56 \times 7 - 1$
Jacob Heasley, 6/21
York, PA
392 (2.0)
$56 \times 7 \times 1$
Jacob Heasley, 7/21
York, PA
393 (2.0)
$56 \times 7 + 1$
Jacob Heasley, 6/21
York, PA
394 (3.2)
$\sqrt{7^6} + 51$
Jonathan Frank, 8/21
Rye, NY
395 (2.8)
$\dfrac{5 - \dfrac{.7}{.\overline{6}}}{1\%}$
Steve Wilson, 5/22
Lawrence, KS
396 (2.0)
$(71 - 5) \times 6$
Jonathan Frank, 6/21
Rye, NY
397 (4.6)
$56 \times 7 - \log(1\%\pm)$
Steve Wilson, 2/23
Lawrence, KS
398 (4.6)
$56 \times 7 - \log(1\pmm)$
Steve Wilson, 2/23
Lawrence, KS
399 (2.0)
$(56 + 1) \times 7$
Dana Reigle, 10/21
Grove City, PA
400 (2.2)
$\dfrac{6 - 7 + 5}{1\%}$
Jonathan Frank, 5/21
Rye, NY

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201+)