\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \)
Jan Hus was a church reformer who lived and worked in Prague, but was executed on 6 July 1415 by the church authorities because of his teachings. If we write this date in European format, ignoring the century, we have the date 6.7.15. Using one copy each of the digits 1, 5, 6, and 7, and any standard operations, create each of the positive integers. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.
Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.
Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201+)
1 (1.0) $\dfrac{7 + 5}{6} - 1$ Steve Wilson, 9/17 Lawrence, KS |
2 (1.0) $\dfrac{7 + 5}{6} \times 1$ Dana Reigle, 9/17 Prague, Czechia |
3 (1.0) $5 + 6 - 7 - 1$ Dana Reigle, 9/17 Prague, Czechia |
4 (1.0) $5 \times 1 + 6 - 7$ Dana Reigle, 9/17 Prague, Czechia |
5 (1.0) $(7 - 6) \times 1 \times 5$ Ralph Jeffords, 9/17 Centreville, VA |
6 (1.0) $6 \times (7 - 5 - 1)$ Ralph Jeffords, 9/17 Centreville, VA |
7 (1.0) $6 - 5 - 1 + 7$ Dana Reigle, 9/17 Prague, Czechia |
8 (1.0) $1 \times 6 + 7 - 5$ Kenneth Chapman, 10/17 Santa Paula, CA |
9 (1.0) $1 + 6 + 7 - 5$ Kenneth Chapman, 10/17 Santa Paula, CA |
10 (1.0) $(7 - 5) \times (6 - 1)$ Dana Reigle, 9/17 Prague, Czechia |
|
11 (1.0) $6 \times (7 - 5) - 1$ Ralph Jeffords, 10/17 Centreville, VA |
12 (1.0) $6 \times (7 \times 1 - 5)$ Kenneth Chapman, 10/17 Santa Paula, CA |
13 (1.0) $6 \times (7 - 5) + 1$ Ralph Jeffords, 10/17 Centreville, VA |
14 (1.0) $(1 + 6) \times (7 - 5)$ Kenneth Chapman, 10/17 Santa Paula, CA |
15 (1.0) $\dfrac{6}{ \dfrac75 - 1}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
16 (2.0) $17 - 6 + 5$ Ralph Jeffords, 10/17 Centreville, VA |
17 (1.0) $5 + 6 + 7 - 1$ Kenneth Chapman, 10/17 Santa Paula, CA |
18 (1.0) $7 \times 1 + 5 + 6$ Dana Reigle, 10/17 Prague, Czechia |
19 (1.0) $1 + 5 + 6 + 7$ Jared Chumbley, 9/17 Prague, Czechia |
20 (2.2) $\dfrac{7 + 5}{.6 \times 1}$ Ralph Jeffords, 10/17 Centreville, VA |
|
21 (1.0) $\dfrac{6}{1 - \dfrac57}$ Ralph Jeffords, 2/18 Centreville, VA |
22 (1.0) $5 \times 6 - 7 - 1$ Jared Chumbley, 9/17 Prague, Czechia |
23 (1.0) $1 \times 5 \times 6 - 7$ Kenneth Chapman, 11/17 Santa Paula, CA |
24 (1.0) $6 \times 5 - 7 + 1$ Dana Reigle, 10/17 Prague, Czechia |
25 (2.0) $76 - 51$ Dana Reigle, 11/17 Prague, Czechia |
26 (2.0) $61 - 7 \times 5$ Ralph Jeffords, 11/17 Centreville, VA |
27 (2.0) $7 \times 6 - 15$ Steve Wilson, 2/18 Lawrence, KS |
28 (1.0) $5 \times 7 - 6 - 1$ Jared Chumbley, 9/17 Prague, Czechia |
29 (1.0) $(1 + 5) \times 6 - 7$ Kenneth Chapman, 11/17 Santa Paula, CA |
30 (1.0) $5 \times 7 + 1 - 6$ Kenneth Chapman, 11/17 Santa Paula, CA |
|
31 (1.0) $(5 - 1) \times 6 + 7$ Ralph Jeffords, 11/17 Centreville, VA |
32 (1.0) $5 \times (6 - 1) + 7$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
33 (2.0) $5 \times (7.6 - 1)$ Steve Wilson, 4/19 Lawrence, KS |
34 (1.0) $(1 + 7) \times 5 - 6$ Kenneth Chapman, 11/17 Santa Paula, CA |
35 (1.0) $\dfrac{7}{ \dfrac65 - 1}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
36 (1.0) $6 \times 5 - 1 + 7$ Dana Reigle, 10/17 Prague, Czechia |
37 (1.0) $1 \times 5 \times 6 + 7$ Kenneth Chapman, 11/17 Santa Paula, CA |
38 (1.0) $6 \times 5 + 1 + 7$ Dana Reigle, 10/17 Prague, Czechia |
39 (2.0) $56 - 17$ Ralph Jeffords, 11/17 Centreville, VA |
40 (1.0) $7 \times 5 + 6 - 1$ Dana Reigle, 11/17 Prague, Czechia |
|
41 (1.0) $7 \times 5 + 6 \times 1$ Ralph Jeffords, 11/17 Centreville, VA |
42 (1.0) $5 \times 7 + 1 + 6$ Dana Reigle, 10/17 Prague, Czechia |
43 (1.0) $6 \times (5 + 1) + 7$ Ralph Jeffords, 12/17 Centreville, VA |
44 (1.0) $7 \times (6 + 1) - 5$ Ralph Jeffords, 1/18 Centreville, VA |
45 (2.0) $7.5 \times 6 \times 1$ Ralph Jeffords, 2/18 Centreville, VA |
46 (1.0) $(7 + 1) \times 5 + 6$ Ralph Jeffords, 12/17 Centreville, VA |
47 (1.0) $7 \times 6 \times 1 + 5$ Dana Reigle, 12/17 Prague, Czechia |
48 (1.0) $7 \times 6 + 5 + 1$ Dana Reigle, 12/17 Prague, Czechia |
49 (2.0) $56 - 7 \times 1$ Steve Wilson, 4/19 Lawrence, KS |
50 (2.0) $51 - 7 + 6$ Ralph Jeffords, 2/18 Centreville, VA |
|
51 (2.0) $51 \times (7 - 6)$ Ralph Jeffords, 1/18 Centreville, VA |
52 (1.0) $(7 + 6) \times (5 - 1)$ Dana Reigle, 12/17 Prague, Czechia |
53 (1.0) $(7 + 1) \times 6 + 5$ Dana Reigle, 12/17 Prague, Czechia |
54 (1.0) $7 \times (6 + 1) + 5$ Ralph Jeffords, 1/18 Centreville, VA |
55 (2.0) $5 \times (17 - 6)$ Ralph Jeffords, 1/18 Centreville, VA |
56 (2.0) $7 \times 5 \times 1.6$ Dana Reigle, 1/18 Prague, Czechia |
57 (2.0) $7 \times 6 + 15$ Steve Wilson, 2/18 Lawrence, KS |
58 (2.0) $65 - 7 \times 1$ Steve Wilson, 4/19 Lawrence, KS |
59 (2.0) $61 - 7 + 5$ Ralph Jeffords, 2/18 Centreville, VA |
60 (1.0) $(7 + 6 - 1) \times 5$ Dana Reigle, 1/18 Prague, Czechia |
|
61 (2.0) $76 - 15$ Ruth Turnau, 11/17 Prague, Czechia |
62 (2.0) $67 \times 1 - 5$ Dana Reigle, 2/18 Prague, Czechia |
63 (2.0) $67 - 5 + 1$ Dana Reigle, 2/18 Prague, Czechia |
64 (1.0) $(7 + 6) \times 5 - 1$ Ruth Turnau, 11/17 Prague, Czechia |
65 (1.0) $(7 + 6) \times 5 \times 1$ Dana Reigle, 1/18 Prague, Czechia |
66 (1.0) $(7 + 6) \times 5 + 1$ Ruth Turnau, 11/17 Prague, Czechia |
67 (2.4) $\dfrac{7 - (5 \times 6)\%}{.1}$ Paolo Pellegrini, 3/18 Martina Franca, Italy |
68 (2.0) $75 - 6 - 1$ Paolo Pellegrini, 3/18 Martina Franca, Italy |
69 (2.0) $75 \times 1 - 6$ Dana Reigle, 2/18 Prague, Czechia |
70 (1.0) $(5 + 6 - 1) \times 7$ Dana Reigle, 1/18 Prague, Czechia |
|
71 (1.0) $(7 + 5) \times 6 - 1$ Dana Reigle, 1/18 Prague, Czechia |
72 (1.0) $(5 + 7) \times 1 \times 6$ Dana Reigle, 2/18 Prague, Czechia |
73 (1.0) $(5 + 7) \times 6 + 1$ Dana Reigle, 2/18 Prague, Czechia |
74 (2.2) $76 - \dfrac{1}{.5}$ Paolo Pellegrini, 3/18 Martina Franca, Italy |
75 (2.2) $\dfrac{6}{(15 - 7)\%}$ Paolo Pellegrini, 3/18 Martina Franca, Italy |
76 (1.0) $(5 + 6) \times 7 - 1$ Paolo Pellegrini, 3/18 Martina Franca, Italy |
77 (1.0) $(6 + 5) \times 7 \times 1$ Dana Reigle, 3/18 Prague, Czechia |
78 (1.0) $(7 + 5 + 1) \times 6$ Dana Reigle, 3/18 Prague, Czechia |
79 (2.0) $17 \times 5 - 6$ Ralph Jeffords, 4/18 Centreville, VA |
80 (2.0) $76 + 5 - 1$ Ralph Jeffords, 3/18 Centreville, VA |
|
81 (2.0) $76 + 5 \times 1$ Ralph Jeffords, 3/18 Centreville, VA |
82 (2.0) $67 + 15$ Ruth Turnau, 3/18 Prague, Czechia |
83 (2.0) $15 \times 6 - 7$ Dana Reigle, 3/18 Prague, Czechia |
84 (1.0) $(5 + 7) \times (6 + 1)$ Dana Reigle, 3/18 Prague, Czechia |
85 (2.2) $7 \times \dfrac{6}{.5} + 1$ Steve Wilson, 4/19 Lawrence, KS |
86 (2.2) $\dfrac{6 - 1.7}{5\%}$ Ralph Jeffords, 8/18 Centreville, VA |
87 (2.0) $16 \times 5 + 7$ Dana Reigle, 3/18 Prague, Czechia |
88 (1.0) $(7 + 1) \times (6 + 5)$ Dana Reigle, 4/18 Prague, Czechia |
89 (2.4) $\dfrac{6}{.\overline{1}} + 7 \times 5$ Ralph Jeffords, 4/18 Centreville, VA |
90 (2.2) $\left( \dfrac{7}{.5} + 1 \right) \times 6$ Steve Wilson, 4/19 Lawrence, KS |
|
91 (2.0) $76 + 15$ Ruth Turnau, 3/18 Prague, Czechia |
92 (2.2) $\dfrac{5}{.1} + 7 \times 6$ Ralph Jeffords, 4/18 Centreville, VA |
93 (2.0) $51 + 7 \times 6$ Ralph Jeffords, 4/18 Centreville, VA |
94 (2.2) $\dfrac{57}{.6} - 1$ Ralph Jeffords, 10/18 Centreville, VA |
95 (2.2) $\dfrac{6}{.1} + 7 \times 5$ Ralph Jeffords, 5/18 Centreville, VA |
96 (2.0) $61 + 7 \times 5$ Ralph Jeffords, 5/18 Centreville, VA |
97 (2.0) $15 \times 6 + 7$ Dana Reigle, 4/18 Prague, Czechia |
98 (2.2) $(1 + 6) \times \dfrac{7}{.5}$ Ralph Jeffords, 8/18 Centreville, VA |
99 (2.0) $15 \times 7 - 6$ Dana Reigle, 4/18 Prague, Czechia |
100 (2.2) $\dfrac{7}{.1} + 5 \times 6$ Ralph Jeffords, 7/18 Centreville, VA |
|
101 (2.0) $71 + 5 \times 6$ Ruth Turnau, 3/18 Prague, Czechia |
102 (2.4) $\dfrac{5 + 7}{.\overline{1}} - 6$ Ralph Jeffords, 9/18 Centreville, VA |
103 (2.2) $\dfrac{6}{5\%} - 17$ Ralph Jeffords, 7/18 Centreville, VA |
104 (2.2) $16 \times (7 - .5)$ Steve Wilson, 5/19 Lawrence, KS |
105 (2.0) $17.5 \times 6$ Dana Reigle, 4/18 Prague, Czechia |
106 (2.4) $\dfrac{6 \times 1 - .7}{5\%}$ Ralph Jeffords, 7/18 Centreville, VA |
107 (2.0) $16 \times 7 - 5$ Dana Reigle, 4/18 Prague, Czechia |
108 (2.2) $\dfrac{61 - 7}{.5}$ Ralph Jeffords, 11/18 Centreville, VA |
109 (2.8) $\dfrac{.7}{.\overline{6}\%} + 5 - 1$ Steve Wilson, 5/19 Lawrence, KS |
110 (2.2) $\dfrac{71 - 5}{.6}$ Ralph Jeffords, 11/18 Centreville, VA |
|
111 (2.0) $15 \times 7 + 6$ Dana Reigle, 6/18 Prague, Czechia |
112 (2.2) $\dfrac{6}{5\%} - 7 - 1$ Steve Wilson, 5/19 Lawrence, KS |
113 (2.2) $\dfrac{6}{5\%} - 7 \times 1$ Ralph Jeffords, 9/18 Centreville, VA |
114 (2.0) $76 \times 1.5$ Dana Reigle, 5/18 Prague, Czechia |
115 (2.0) $(17 + 6) \times 5$ Dana Reigle, 5/18 Prague, Czechia |
116 (2.4) $\dfrac{7 - (5 - 1)\%}{6\%}$ Steve Wilson, 5/19 Lawrence, KS |
117 (2.0) $16 \times 7 + 5$ Dana Reigle, 5/18 Prague, Czechia |
118 (2.0) $67 + 51$ Ralph Jeffords, 6/18 Centreville, VA |
119 (2.4) $\dfrac{7}{.\overline{1}} + 56$ Ralph Jeffords, 9/18 Centreville, VA |
120 (2.0) $16 \times 7.5$ Dana Reigle, 5/18 Prague, Czechia |
|
121 (2.4) $76 + \dfrac{5}{.\overline{1}}$ Ralph Jeffords, 10/18 Centreville, VA |
122 (2.0) $61 \times (7 - 5)$ Steve Wilson, 5/19 Lawrence, KS |
123 (2.8) $\dfrac{6.\overline{1}}{5\%} + .\overline{7}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
124 (2.2) $\dfrac{75}{.6} - 1$ Dana Reigle, 8/18 Northumberland, PA |
125 (2.2) $\dfrac{6 + 7}{.1} - 5$ Ralph Jeffords, 8/18 Centreville, VA |
126 (2.2) $\dfrac{75}{.6} + 1$ Dana Reigle, 8/18 Northumberland, PA |
127 (2.0) $76 + 51$ Steve Wilson, 8/18 Lawrence, KS |
128 (2.2) $\dfrac{6}{5\%} + 7 + 1$ Steve Wilson, 6/19 Lawrence, KS |
129 (2.2) $\dfrac{6.1}{5\%} + 7$ Ralph Jeffords, 9/18 Centreville, VA |
130 (2.2) $\dfrac{71 - 6}{.5}$ Ralph Jeffords, 11/18 Centreville, VA |
|
131 (2.8) $\dfrac{.7}{.\overline{5}\%} + 6 - 1$ Ralph Jeffords, 12/18 Centreville, VA |
132 (2.0) $(17 + 5) \times 6$ Dana Reigle, 7/18 Northumberland, PA |
133 (2.2) $\dfrac{67}{.5} - 1$ Ralph Jeffords, 10/18 Centreville, VA |
134 (2.2) $67 \times \dfrac{1}{.5}$ Ralph Jeffords, 10/18 Centreville, VA |
135 (2.2) $75 + \dfrac{6}{.1}$ Dana Reigle, 9/18 Grove City, PA |
136 (2.0) $75 + 61$ Steve Wilson, 8/18 Lawrence, KS |
137 (2.2) $\dfrac{6}{5\%} + 17$ Ralph Jeffords, 12/18 Centreville, VA |
138 (2.6) $\dfrac{1}{.\overline{5}\%} - 7 \times 6$ Steve Wilson, 6/19 Lawrence, KS |
139 (2.4) $\dfrac{7 - 5\%}{(6 - 1)\%}$ Steve Wilson, 6/19 Lawrence, KS |
140 (2.2) $\dfrac{7 - 5.6}{1\%}$ Steve Wilson, 6/19 Lawrence, KS |
|
141 (2.4) $\dfrac{7 + 5\%}{(6 - 1)\%}$ Steve Wilson, 7/19 Lawrence, KS |
142 (2.8) $\dfrac{.7}{.\overline{5}\%} + 16$ Ralph Jeffords, 12/18 Centreville, VA |
143 (2.2) $\dfrac{6}{(5 - 1)\%} - 7$ Steve Wilson, 7/19 Lawrence, KS |
144 (2.4) $\dfrac{7 - .1}{5\%} + 6$ Ralph Jeffords, 12/18 Centreville, VA |
145 (2.2) $\dfrac{7}{5\%} + 6 - 1$ Steve Wilson, 11/18 Lawrence, KS |
146 (2.2) $\dfrac{7}{5\%} + 6 \times 1$ Steve Wilson, 11/18 Lawrence, KS |
147 (2.0) $7 \times (6 + 15)$ Dana Reigle, 10/18 Grove City, PA |
148 (2.2) $\dfrac{71}{.5} + 6$ Steve Wilson, 11/18 Lawrence, KS |
149 (2.0) $156 - 7$ Steve Wilson, 7/19 Lawrence, KS |
150 (2.2) $\dfrac{1.5}{(7 - 6)\%}$ Steve Wilson, 7/19 Lawrence, KS |
|
151 (2.0) $157 - 6$ Dana Reigle, 9/18 Grove City, PA |
152 (2.2) $\dfrac{76}{.5} \times 1$ Steve Wilson, 11/18 Lawrence, KS |
153 (2.2) $\dfrac{76}{.5} + 1$ Steve Wilson, 11/18 Lawrence, KS |
154 (2.2) $\dfrac{76 + 1}{.5}$ Dana Reigle, 5/19 Northumberland, PA |
155 (2.6) $\dfrac{ \dfrac{7}{.\overline{6}} + 5}{.1}$ Steve Wilson, 7/19 Lawrence, KS |
156 (2.2) $\dfrac{7}{5\%} + 16$ Steve Wilson, 8/19 Lawrence, KS |
157 (2.2) $\dfrac{6}{(5 - 1)\%} + 7$ Steve Wilson, 8/19 Lawrence, KS |
158 (2.0) $165 - 7$ Steve Wilson, 8/19 Lawrence, KS |
159 (2.8) $\dfrac{1 - \dfrac{.7}{6}}{.\overline{5}\%}$ Steve Wilson, 8/19 Lawrence, KS |
160 (2.4) $\dfrac{7 - .6}{(5 - 1)\%}$ Steve Wilson, 8/19 Lawrence, KS |
|
161 (3.2) $5! + 7 \times 6 - 1$ Steve Wilson, 6/19 Lawrence, KS |
162 (2.0) $167 - 5$ Dana Reigle, 10/18 Grove City, PA |
163 (2.0) $157 + 6$ Dana Reigle, 10/18 Grove City, PA |
164 (2.8) $\dfrac{1}{.\overline{6}\%} + \dfrac{7}{.5}$ Steve Wilson, 10/19 Lawrence, KS |
165 (3.2) $\dfrac{.7 + .5 - .1}{.\overline{6}\%}$ Steve Wilson, 10/19 Lawrence, KS |
166 (2.2) $\dfrac{7 + 1}{5\%} + 6$ Steve Wilson, 10/19 Lawrence, KS |
167 (2.6) $\dfrac{1}{.\overline{5}\%} - 7 - 6$ Steve Wilson, 10/19 Lawrence, KS |
168 (1.0) $(5 - 1) \times 6 \times 7$ Steve Wilson, 8/18 Lawrence, KS |
169 (2.0) $175 - 6$ Dana Reigle, 11/18 Grove City, PA |
170 (2.2) $\dfrac{1.7}{(6 - 5)\%}$ Steve Wilson, 10/19 Lawrence, KS |
|
171 (2.0) $176 - 5$ Dana Reigle, 11/18 Grove City, PA |
172 (2.0) $167 + 5$ Dana Reigle, 11/18 Grove City, PA |
173 (3.4) $5! + \dfrac{6}{.1} - 7$ Steve Wilson, 11/19 Lawrence, KS |
174 (2.6) $\dfrac{1 - (6 + 7)\%}{.5\%}$ Steve Wilson, 11/19 Lawrence, KS |
175 (1.0) $7 \times (6 - 1) \times 5$ Steve Wilson, 6/18 Lawrence, KS |
176 (3.4) $\sqrt{\sqrt[.5]{176}}$ Steve Wilson, 11/19 Lawrence, KS |
177 (3.2) $(6 - 1)! + 57$ Steve Wilson, 8/20 Lawrence, KS |
178 (2.6) $\dfrac{ \dfrac{6}{.\overline{5}} + 7}{.1}$ Steve Wilson, 11/19 Lawrence, KS |
179 (2.6) $\dfrac{1}{.\overline{5}\%} + 6 - 7$ Steve Wilson, 11/19 Lawrence, KS |
180 (1.0) $(7 - 1) \times 6 \times 5$ Steve Wilson, 6/18 Lawrence, KS |
|
181 (2.0) $176 + 5$ Dana Reigle, 12/18 Northumberland, PA |
182 (2.2) $\left( \dfrac{1}{5\%} + 6 \right) \times 7$ Steve Wilson, 2/20 Lawrence, KS |
183 (2.6) $\dfrac{6}{5\%} + \dfrac{7}{.\overline{1}}$ Steve Wilson, 2/20 Lawrence, KS |
184 (3.4) $5! + \dfrac{7}{.1} - 6$ Steve Wilson, 8/20 Lawrence, KS |
185 (2.6) $\dfrac{1}{.\overline{6}\%} + 5 \times 7$ Steve Wilson, 2/20 Lawrence, KS |
186 (2.6) $\dfrac{ \dfrac{7}{.\overline{5}} + 6}{.1}$ Steve Wilson, 2/20 Lawrence, KS |
187 (2.0) $17 \times (6 + 5)$ Dana Reigle, 12/18 Northumberland, PA |
188 (3.2) $5! + 67 + 1$ Steve Wilson, 2/20 Lawrence, KS |
189 (2.6) $\dfrac{.5 \times 6 \times 7}{.\overline{1}}$ Steve Wilson, 4/20 Lawrence, KS |
190 (2.2) $\dfrac{7.6}{(5 - 1)\%}$ Steve Wilson, 4/20 Lawrence, KS |
|
191 (2.2) $\dfrac{6}{5\%} + 71$ Steve Wilson, 4/20 Lawrence, KS |
192 (2.0) $16 \times (7 + 5)$ Dana Reigle, 1/19 Northumberland, PA |
193 (2.6) $\dfrac{1}{.\overline{5}\%} + 6 + 7$ Steve Wilson, 4/20 Lawrence, KS |
194 (2.2) $\dfrac{7 - 5}{1\%} - 6$ Steve Wilson, 4/20 Lawrence, KS |
195 (2.0) $15 \times (7 + 6)$ Dana Reigle, 1/19 Northumberland, PA |
196 (3.2) $5! + 76 \times 1$ Steve Wilson, 5/20 Lawrence, KS |
197 (3.2) $5! + 76 + 1$ Steve Wilson, 5/20 Lawrence, KS |
198 (2.6) $\dfrac{7 - 6 - 1\%}{.5\%}$ Steve Wilson, 5/20 Lawrence, KS |
199 (2.2) $\dfrac{5 + 7}{6\%} - 1$ Steve Wilson, 5/20 Lawrence, KS |
200 (2.2) $\dfrac{5 + 7}{6\%} \times 1$ Steve Wilson, 5/20 Lawrence, KS |
|
201 (2.2) $\dfrac{5 + 7}{6\%} + 1$ Steve Wilson, 6/20 Lawrence, KS |
202 (2.6) $\dfrac{7 - 6 + 1\%}{.5\%}$ Steve Wilson, 6/20 Lawrence, KS |
203 (1.0) $7 \times (5 \times 6 - 1)$ Dana Reigle, 2/19 Grove City, PA |
204 (1.0) $6 \times (7 \times 5 - 1)$ Dana Reigle, 2/19 Grove City, PA |
205 (1.0) $5 \times (7 \times 6 - 1)$ Dana Reigle, 2/19 Grove City, PA |
206 (2.2) $\dfrac{7 - 5}{1\%} + 6$ Steve Wilson, 6/20 Lawrence, KS |
207 (2.2) $5 \times 6 \times (7 - .1)$ Steve Wilson, 6/20 Lawrence, KS |
208 (2.6) $\dfrac{1 + 7\%}{.5\%} - 6$ Steve Wilson, 6/20 Lawrence, KS |
209 (1.0) $7 \times 6 \times 5 - 1$ Steve Wilson, 6/18 Lawrence, KS |
210 (1.0) $6 \times 7 \times 1 \times 5$ Steve Wilson, 6/18 Lawrence, KS |
|
211 (1.0) $7 \times 6 \times 5 + 1$ Steve Wilson, 6/18 Lawrence, KS |
212 (2.8) $\dfrac{ \dfrac{7}{.\overline{6}} + .1}{5\%}$ Steve Wilson, 7/20 Lawrence, KS |
213 (2.0) $5 \times 6 \times 7.1$ Steve Wilson, 7/20 Lawrence, KS |
214 (3.4) $\dfrac{6!}{5} + \dfrac{7}{.1}$ Steve Wilson, 7/20 Lawrence, KS |
215 (1.0) $(6 \times 7 + 1) \times 5$ Dana Reigle, 3/19 Grove City, PA |
216 (1.0) $(5 \times 7 + 1) \times 6$ Dana Reigle, 3/19 Grove City, PA |
217 (1.0) $(5 \times 6 + 1) \times 7$ Dana Reigle, 3/19 Grove City, PA |
218 (2.6) $\dfrac{1.5}{.\overline{6}\%} - 7$ Steve Wilson, 7/20 Lawrence, KS |
219 (2.6) $\dfrac{1 + 6\%}{.5\%} + 7$ Steve Wilson, 7/20 Lawrence, KS |
220 (2.2) $\dfrac{17 - 6}{5\%}$ Steve Wilson, 8/20 Lawrence, KS |
|
221 (3.2) $\sqrt{6^{7-1}} + 5$ Jonathan Frank, 6/21 Rye, NY |
222 (2.6) $\dfrac{1}{.\overline{5}\%} + 6 \times 7$ Steve Wilson, 8/20 Lawrence, KS |
223 (3.4) $\sqrt{7^6} - 1 \times 5!$ Jonathan Frank, 6/21 Rye, NY |
224 (2.2) $\dfrac{16 \times 7}{.5}$ Dana Reigle, 9/19 Grove City, PA |
225 (2.4) $\dfrac{1}{(7 - 6.\overline{5})\%}$ Steve Wilson, 8/20 Lawrence, KS |
226 (2.6) $\dfrac{1 + (6 + 7)\%}{.5\%}$ Steve Wilson, 9/20 Lawrence, KS |
227 (3.4) $6! - \dfrac{5}{1\%} + 7$ Steve Wilson, 6/22 Lawrence, KS |
228 (2.4) $\left( \dfrac{5}{.\overline{1}} - 7 \right) \times 6$ Steve Wilson, 9/20 Lawrence, KS |
229 (3.2) $\dfrac{.\overline{1}}{.\overline{5}\%} + 6.\overline{7}$ Steve Wilson, 6/22 Lawrence, KS |
230 (2.2) $\dfrac{5 \times 6 - 7}{.1}$ Steve Wilson, 9/20 Lawrence, KS |
|
231 (2.8) $\dfrac{.5}{(1 - .\overline{7})\%} + 6$ Steve Wilson, 9/20 Lawrence, KS |
232 (2.6) $\dfrac{1.5}{.\overline{6}\%} + 7$ Steve Wilson, 9/20 Lawrence, KS |
233 (2.6) $\dfrac{7 - 1\%}{6 \times .5\%}$ Steve Wilson, 10/20 Lawrence, KS |
234 (2.6) $\dfrac{7 + 6}{.1 \times .\overline{5}\%}$ Steve Wilson, 10/20 Lawrence, KS |
235 (2.4) $\dfrac{\dfrac{7}{5\%} + 1}{.6}$ Steve Wilson, 10/20 Lawrence, KS |
236 (3.4) $7! \times 5\% - 16$ Steve Wilson, 1/22 Lawrence, KS |
237 (3.6) $5! + \dfrac{7 + 6}{.\overline{1}}$ Steve Wilson, 7/22 Lawrence, KS |
238 (2.4) $51 \times 6 \times .\overline{7}$ Steve Wilson, 10/20 Lawrence, KS |
239 (4.6) $6 - 7 - 5! \times \log(1\%)$ Steve Wilson, 10/22 Lawrence, KS |
240 (1.0) $(7 + 1) \times 6 \times 5$ Steve Wilson, 1/19 Lawrence, KS |
|
241 (4.6) $7 - 6 - 5! \times \log(1\%)$ Steve Wilson, 10/22 Lawrence, KS |
242 (2.4) $\dfrac{1}{.5\%} + 6 \times 7$ Dana Reigle, 7/20 Northumberland, PA |
243 (2.2) $\dfrac{15}{6\%} - 7$ Steve Wilson, 10/20 Lawrence, KS |
244 (3.8) $(6! + 7 + 5) \times \sqrt{.\overline{1}}$ Steve Wilson, 1/22 Lawrence, KS |
245 (1.0) $7 \times (6 + 1) \times 5$ Steve Wilson, 1/19 Lawrence, KS |
246 (2.8) $\dfrac{ \dfrac{.7}{.\overline{1}} + 6}{5\%}$ Steve Wilson, 11/20 Lawrence, KS |
247 (2.6) $\dfrac{1}{.\overline{5}\%}+ 67$ Steve Wilson, 11/20 Lawrence, KS |
248 (2.8) $\dfrac{ \dfrac{.6}{.\overline{1}} + 7}{5\%}$ Steve Wilson, 11/20 Lawrence, KS |
249 (3.2) $\sqrt[.5]{16} - 7$ Steve Wilson, 11/20 Lawrence, KS |
250 (2.2) $\dfrac{5}{(7 - 6 + 1)\%}$ Steve Wilson, 11/20 Lawrence, KS |
|
251 (3.4) $\dfrac{7!}{5!} \times 6 - 1$ Jacob Heasley, 5/21 York, PA |
252 (1.0) $7 \times 6 \times (5 + 1)$ Steve Wilson, 1/19 Lawrence, KS |
253 (3.4) $\dfrac{7!}{5!} \times 6 + 1$ Jacob Heasley, 5/21 York, PA |
254 (3.4) $\dfrac{(6 - 1)! + 7}{.5}$ Steve Wilson, 1/22 Lawrence, KS |
255 (3.6) $765 \times \sqrt{.\overline{1}}$ Steve Wilson, 10/21 Lawrence, KS |
256 (2.6) $\dfrac{1}{.\overline{5}\%} + 76$ Steve Wilson, 12/20 Lawrence, KS |
257 (2.2) $\dfrac{15}{6\%} + 7$ Steve Wilson, 12/20 Lawrence, KS |
258 (2.2) $\left( \dfrac{5}{.1} - 7 \right) \times 6$ Steve Wilson, 12/20 Lawrence, KS |
259 (2.2) $\dfrac{7 + 6}{5\%} - 1$ Dana Reigle, 8/20 Grove City, PA |
260 (2.2) $\dfrac{7 + 6}{5\%} \times 1$ Dana Reigle, 9/20 Grove City, PA |
|
261 (2.2) $\dfrac{7 + 6}{5\%} + 1$ Dana Reigle, 10/20 Grove City, PA |
262 (2.2) $\dfrac{7 + 6.1}{5\%}$ Steve Wilson, 12/20 Lawrence, KS |
263 (2.4) $\dfrac{5 \times 6}{.\overline{1}} - 7$ Steve Wilson, 12/20 Lawrence, KS |
264 (2.0) $(51 - 7) \times 6$ Dana Reigle, 4/19 Northumberland, PA |
265 (2.2) $5 \times \left( \dfrac{6}{.1} - 7 \right)$ Steve Wilson, 2/21 Lawrence, KS |
266 (3.8) $7 \times (5! - 6) \times \sqrt{.\overline{1}}$ Steve Wilson, 1/22 Lawrence, KS |
267 (2.4) $\dfrac{1}{.5\%} + 67$ Steve Wilson, 2/21 Lawrence, KS |
268 (2.0) $67 \times (5 - 1)$ Steve Wilson, 2/21 Lawrence, KS |
269 (3.2) $\dfrac{.6}{(.\overline{7} - .\overline{5})\%} - 1$ Steve Wilson, 11/22 Lawrence, KS |
270 (2.0) $5 \times (61 - 7)$ Steve Wilson, 2/21 Lawrence, KS |
|
271 (3.2) $\dfrac{.6}{(.\overline{7} - .\overline{5})\%} + 1$ Steve Wilson, 11/22 Lawrence, KS |
272 (4.0) $6! \times (.\overline{7} - .5 + .1)$ Steve Wilson, 11/22 Lawrence, KS |
273 (2.4) $7 \times \left( \dfrac{5}{.\overline{1}} - 6 \right)$ Steve Wilson, 2/21 Lawrence, KS |
274 (3.8) $5! \times 7 \times \sqrt{.\overline{1}} - 6$ Steve Wilson, 1/22 Lawrence, KS |
275 (2.4) $\dfrac{17 - .5}{6\%}$ Steve Wilson, 3/21 Lawrence, KS |
276 (2.4) $\dfrac{1}{.5\%} + 76$ Steve Wilson, 3/21 Lawrence, KS |
277 (2.4) $\dfrac{5 \times 6}{.\overline{1}} + 7$ Steve Wilson, 3/21 Lawrence, KS |
278 (3.6) $\sqrt[\sqrt{.\overline{1}}]{7} - 65$ Steve Wilson, 2/22 Lawrence, KS |
279 (4.0) $5 \times \left( 7!\% + \dfrac{.6}{.\overline{1}} \right)$ Steve Wilson, 11/22 Lawrence, KS |
280 (2.2) $\dfrac{7 + 6 + 1}{5\%}$ Dana Reigle, 11/20 Northumberland, PA |
|
281 (2.6) $\dfrac{1.6}{.\overline{5}\%} - 7$ Steve Wilson, 3/21 Lawrence, KS |
282 (3.4) $(7!\% + 6) \times 5 \times 1$ Steve Wilson, 2/22 Lawrence, KS |
283 (3.2) $\sqrt[.5]{17} - 6$ Steve Wilson, 3/21 Lawrence, KS |
284 (2.6) $\dfrac{1 + 7 \times 6\%}{.5\%}$ Steve Wilson, 4/21 Lawrence, KS |
285 (2.0) $57 \times (6 - 1)$ Steve Wilson, 4/21 Lawrence, KS |
286 (2.8) $\dfrac{ \dfrac{1}{.\overline{6}\%} - 7}{.5}$ Steve Wilson, 4/21 Lawrence, KS |
287 (3.2) $5! +167$ Steve Wilson, 7/22 Lawrence, KS |
288 (2.6) $(7 - .6) \times \dfrac{5}{.\overline{1}}$ Steve Wilson, 4/21 Lawrence, KS |
289 (3.4) $\dfrac{7!}{5} - 6! + 1$ Jonathan Frank, 8/21 Rye, NY |
290 (2.2) $\dfrac{5 \times 7 - 6}{.1}$ Steve Wilson, 5/21 Lawrence, KS |
|
291 (3.6) $\sqrt[\sqrt{.\overline{1}}]{6} + 75$ Steve Wilson, 6/23 Lawrence, KS |
292 (3.2) $\sqrt{7^6} - 51$ Jonathan Frank, 6/21 Rye, NY |
293 (2.2) $\dfrac{6 \times 5}{.1} - 7$ Dana Reigle, 8/19 Grove City, PA |
294 (3.2) $6 \times 7^{1/.5}$ Steve Wilson, 4/21 Lawrence, KS |
295 (2.4) $\dfrac{6 - .1}{(7 - 5)\%}$ Steve Wilson, 6/21 Lawrence, KS |
296 (3.2) $5! + 176$ Steve Wilson, 7/22 Lawrence, KS |
297 (3.8) $6! \times \sqrt{.\overline{1}} + 57$ Steve Wilson, 12/22 Lawrence, KS | .
298 (2.0) $5 \times 61 - 7$ Steve Wilson, 5/21 Lawrence, KS |
299 (2.0) $51 \times 6 - 7$ Dana Reigle, 10/19 Grove City, PA |
300 (2.2) $\dfrac{6}{(7 - 5) \times 1\%}$ Jonathan Frank, 5/21 Rye, NY |
|
301 (2.2) $\dfrac{6}{(7 - 5)\%} + 1$ Steve Wilson, 5/21 Lawrence, KS |
302 (2.8) $\dfrac{1.6\overline{7}}{.\overline{5}\%}$ Steve Wilson, 5/21 Lawrence, KS |
303 (3.6) $7! \times (5 + 1)\% + .6$ Steve Wilson, 6/23 Lawrence, KS |
304 (2.0) $76 \times (5 - 1)$ Dana Reigle, 11/19 Grove City, PA |
305 (2.2) $\dfrac{6.1}{(7 - 5)\%}$ Steve Wilson, 5/21 Lawrence, KS |
306 (2.4) $\dfrac{16 - .7}{5\%}$ Steve Wilson, 6/21 Lawrence, KS |
307 (2.2) $\dfrac{6 \times 5}{.1} + 7$ Steve Wilson, 6/21 Lawrence, KS |
308 (2.2) $7 \times \left(\dfrac{5}{.1} - 6 \right)$ Steve Wilson, 6/21 Lawrence, KS |
309 (2.4) $\dfrac{5 \times 7}{.\overline{1}} - 6$ Steve Wilson, 6/21 Lawrence, KS |
310 (2.6) $\dfrac{1 - 7\%}{5\% \times 6\%}$ Steve Wilson, 7/21 Lawrence, KS |
|
311 (4.6) $\sqrt{7^6} + (\log(1\%))^5$ Steve Wilson, 12/22 Lawrence, KS |
312 (2.0) $61 \times 5 + 7$ Steve Wilson, 7/21 Lawrence, KS |
313 (2.0) $51 \times 6 + 7$ Dana Reigle, 12/19 Northumberland, PA |
314 (2.8) $\dfrac{ \dfrac{1}{.\overline{6}\%} + 7}{.5}$ Steve Wilson, 7/21 Lawrence, KS |
315 (2.0) $(51 - 6) \times 7$ Steve Wilson, 7/21 Lawrence, KS |
316 (4.0) $6! \times (.1 + .\overline{7}) \times .5$ Steve Wilson, 12/22 Lawrence, KS | .
317 (4.4) $\dfrac{.6}{.\overline{5}\% \times \sqrt{.\overline{1}}} - 7$ Steve Wilson, 10/22 Lawrence, KS |
318 (2.8) $\left( \dfrac{7}{.\overline{1}} + .6 \right) \times 5$ Steve Wilson, 7/21 Lawrence, KS |
319 (3.4) $\sqrt{7^6} - (5 - 1)!$ Steve Wilson, 2/22 Lawrence, KS |
320 (2.2) $5 \times \left( \dfrac{7}{.1} - 6 \right)$ Steve Wilson, 8/21 Lawrence, KS |
|
321 (2.4) $5 \times \dfrac{7}{.\overline{1}} + 6$ Jonathan Frank, 8/21 Rye, NY |
322 (4.8) $\sqrt{7^6} - \cot\arctan(5\%) - 1$ Steve Wilson, 12/22 Lawrence, KS | .
323 (2.4) $51 \times (7 - .\overline{6})$ Steve Wilson, 8/21 Lawrence, KS |
324 (2.8) $(1 - .7) \times \dfrac{6}{.\overline{5}\%}$ Steve Wilson, 8/21 Lawrence, KS |
325 (2.0) $(71 - 6) \times 5$ Jonathan Frank, 6/21 Rye, NY |
326 (2.8) $\dfrac{1.\overline{7}}{.\overline{5}\%} + 6$ Steve Wilson, 8/21 Lawrence, KS |
327 (2.2) $\dfrac{16}{5\%} + 7$ Dana Reigle, 2/21 Grove City, PA |
328 (2.4) $\dfrac{17 - .6}{5\%}$ Steve Wilson, 8/21 Lawrence, KS |
329 (3.6) $6! \times .\overline{5} - 71$ Steve Wilson, 12/22 Lawrence, KS | .
330 (2.0) $5 \times (67 - 1)$ Steve Wilson, 10/21 Lawrence, KS |
|
331 (2.8) $\dfrac{1 - .7\%}{5\% \times 6\%}$ Steve Wilson, 9/21 Lawrence, KS |
332 (3.6) $\sqrt[\sqrt{.\overline{1}}]{7} - 6 - 5$ Steve Wilson, 2/22 Lawrence, KS |
333 (2.4) $\dfrac{5 \times 6 + 7}{.\overline{1}}$ Steve Wilson, 9/21 Lawrence, KS |
334 (2.0) $67 \times 5 - 1$ Dana Reigle, 3/21 Grove City, PA |
335 (2.0) $67 \times 5 \times 1$ Dana Reigle, 3/21 Grove City, PA |
336 (2.0) $67 \times 5 + 1$ Dana Reigle, 3/21 Grove City, PA |
337 (2.6) $\dfrac{6}{1.\overline{7}\%} - .5$ Steve Wilson, 9/21 Lawrence, KS |
338 (2.6) $\dfrac{6}{1.\overline{7}\%} + .5$ Steve Wilson, 9/21 Lawrence, KS |
339 (3.2) $\sqrt{7^6} - 5 + 1$ Jonathan Frank, 7/21 Rye, NY |
340 (2.0) $(67 + 1) \times 5$ Steve Wilson, 9/21 Lawrence, KS |
|
341 (2.0) $57 \times 6 - 1$ Dana Reigle, 2/20 Northumberland, PA |
342 (2.0) $57 \times 6 \times 1$ Dana Reigle, 3/20 Northumberland, PA |
343 (2.0) $57 \times 6 + 1$ Dana Reigle, 4/20 Northumberland, PA |
344 (2.2) $\dfrac{7 \times 5}{.1} - 6$ Jonathan Frank, 9/21 Rye, NY |
345 (2.4) $5 \times \left( 6 + \dfrac{7}{.\overline{1}} \right)$ Steve Wilson, 10/21 Lawrence, KS |
346 (2.2) $\dfrac{17}{5\%} + 6$ Dana Reigle, 12/20 Northumberland, PA |
347 (2.4) $\dfrac{5}{.1} \times (7 - 6\%)$ Steve Wilson, 10/21 Lawrence, KS |
348 (2.0) $(57 + 1) \times 6$ Dana Reigle, 8/21 Grove City, PA |
349 (2.0) $5 \times 71 - 6$ Steve Wilson, 11/21 Lawrence, KS |
350 (2.2) $\dfrac{1 + 6}{(7 - 5)\%}$ Steve Wilson, 11/21 Lawrence, KS |
|
351 (2.0) $51 \times 7 - 6$ Dana Reigle, 5/20 Northumberland, PA |
352 (2.2) $\dfrac{176}{.5}$ Steve Wilson, 11/21 Lawrence, KS |
353 (2.4) $(7 + 6\%) \times \dfrac{5}{.1}$ Steve Wilson, 11/21 Lawrence, KS |
354 (2.8) $\dfrac{1}{(.\overline{7} - .5)\%} - 6$ Steve Wilson, 11/21 Lawrence, KS |
355 (3.6) $\sqrt{7^6} + 5! \times .1$ Steve Wilson, 2/22 Lawrence, KS |
356 (2.2) $\dfrac{5 \times 7}{.1} + 6$ Jacob Heasley, 8/21 Grove City, PA |
357 (2.4) $\left( \dfrac{5}{.\overline{1}} + 6 \right) \times 7$ Jonathan Frank, 9/21 Rye, NY |
358 (2.0) $5 \times 71.6$ Steve Wilson, 12/21 Lawrence, KS |
359 (3.2) $\dfrac{6!}{7 - 5} - 1$ Jacob Heasley, 5/21 York, PA |
360 (2.6) $(1 - .7) \times \dfrac{6}{.5\%}$ Steve Wilson, 12/21 Lawrence, KS |
|
361 (2.0) $5 \times 71 + 6$ Steve Wilson, 12/21 Lawrence, KS |
362 (4.6) $\dfrac{6!}{7 - 5} - \log(1\%)$ Steve Wilson, 1/23 Lawrence, KS |
363 (2.0) $51 \times 7 + 6$ Dana Reigle, 6/20 Grove City, PA |
364 (3.4) $(6! + 7 + 1) \times .5$ Steve Wilson, 3/22 Lawrence, KS |
365 (3.4) $6! - 71 \times 5$ Jonathan Frank, 5/21 Rye, NY |
366 (2.8) $\dfrac{1}{(.\overline{7} - .5)\%} + 6$ Steve Wilson, 12/21 Lawrence, KS |
367 (3.4) $6! \times .5 + 7 \times 1$ Steve Wilson, 3/22 Lawrence, KS |
368 (3.4) $6! \times .5 + 7 + 1$ Steve Wilson, 3/22 Lawrence, KS |
369 (2.4) $\dfrac{5 \times 7 + 6}{.\overline{1}}$ Steve Wilson, 12/21 Lawrence, KS |
370 (2.2) $\dfrac{5 \times 6 + 7}{.1}$ Steve Wilson, 4/22 Lawrence, KS |
|
371 (4.8) $76 \times 5 - \cot\arctan(.\overline{1})$ Steve Wilson, 1/23 Lawrence, KS |
372 (3.6) $7! \times 5\% + (6 - 1)!$ Steve Wilson, 3/22 Lawrence, KS |
373 (2.4) $7 \times \dfrac{6}{.\overline{1}} - 5$ Jonathan Frank, 12/21 Rye, NY |
374 (2.8) $\dfrac{.5}{.\overline{1}\%} - 76$ Steve Wilson, 4/22 Lawrence, KS |
375 (2.0) $(76 - 1) \times 5$ Dana Reigle, 5/21 Northumberland, PA |
376 (4.6) $76 \times 5 + \log(1\%\%)$ Steve Wilson, 1/23 Lawrence, KS |
377 (3.4) $6! \times .5 + 17$ Steve Wilson, 3/22 Lawrence, KS |
378 (2.8) $\dfrac{7}{.\overline{1} - \dfrac{.\overline{5}}{6}}$ Steve Wilson, 10/21 Lawrence, KS |
379 (2.0) $76 \times 5 - 1$ Jonathan Frank, 4/21 Rye, NY |
380 (2.0) $76 \times 5 \times 1$ Jonathan Frank, 4/21 Rye, NY |
|
381 (2.0) $76 \times 5 + 1$ Jonathan Frank, 4/21 Rye, NY |
382 (3.6) $\sqrt{ \dfrac{5^6}{.\overline{1}}} + 7$ Steve Wilson, 4/22 Lawrence, KS |
383 (2.4) $7 \times \dfrac{6}{.\overline{1}} + 5$ Jonathan Frank, 12/21 Rye, NY |
384 (4.0) $\dfrac{7 - .6}{5\% \times \sqrt{.\overline{1}}}$ Steve Wilson, 10/22 Lawrence, KS |
385 (2.0) $(76 + 1) \times 5$ Dana Reigle, 5/21 Northumberland, PA |
386 (4.6) $76 \times 5 - \log(1\pm\pm)$ Steve Wilson, 1/23 Lawrence, KS |
387 (4.8) $76 \times 5 - \log(1\%\%\pm)$ Steve Wilson, 1/23 Lawrence, KS |
388 (3.6) $\sqrt{7^6} + \dfrac{5}{.\overline{1}}$ Steve Wilson, 4/22 Lawrence, KS |
389 (2.8) $\dfrac{.6}{.\overline{15}\%} - 7$ Steve Wilson, 4/22 Lawrence, KS |
390 (2.0) $65 \times (7 - 1)$ Dana Reigle, 5/21 Northumberland, PA |
|
391 (2.0) $56 \times 7 - 1$ Jacob Heasley, 6/21 York, PA |
392 (2.0) $56 \times 7 \times 1$ Jacob Heasley, 7/21 York, PA |
393 (2.0) $56 \times 7 + 1$ Jacob Heasley, 6/21 York, PA |
394 (3.2) $\sqrt{7^6} + 51$ Jonathan Frank, 8/21 Rye, NY |
395 (2.8) $\dfrac{5 - \dfrac{.7}{.\overline{6}}}{1\%}$ Steve Wilson, 5/22 Lawrence, KS |
396 (2.0) $(71 - 5) \times 6$ Jonathan Frank, 6/21 Rye, NY |
397 (4.6) $56 \times 7 - \log(1\%\pm)$ Steve Wilson, 2/23 Lawrence, KS |
398 (4.6) $56 \times 7 - \log(1\pmm)$ Steve Wilson, 2/23 Lawrence, KS |
399 (2.0) $(56 + 1) \times 7$ Dana Reigle, 10/21 Grove City, PA |
400 (2.2) $\dfrac{6 - 7 + 5}{1\%}$ Jonathan Frank, 5/21 Rye, NY |
Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201+)