\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \)

Integermania!

Mile and a Foot

There are 5281 feet in a mile and a foot. Create each of the positive integers using one copy of each of the digits 5, 2, 8, and 1, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Computer analysis shows that if a set contains 4 digits, then the largest possible level 1 exquisiteness is achieved by the digits in the number 5281. Therefore, the name "Mile and a Foot" seems very appropriate, because this set will produce a very long sequence of level 1 solutions. This result suggested some additional questions.

Paolo Pellegrini has reported that the set {2, 3, 4, 22} produces an exquisiteness just one more than the exquisiteness of "Mile and a Foot". This result answers both questions above, but the questions can be rephrased for this new set. Does the set {2, 3, 4, 22} give the largest possible exquisiteness?

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801+).

  801 (2.4)
$\dfrac{8}{1\%} + 5 \times .2$
Steve Wilson, 1/13
Raytown, MO
802 (2.4)
$\dfrac{ \dfrac{8}{2\%} + 1}{.5}$
Steve Wilson, 1/13
Raytown, MO
803 (2.2)
$\dfrac{8}{1\%} + 5 - 2$
Steve Wilson, 1/13
Raytown, MO
804 (2.4)
$\dfrac{8}{1\%} + \dfrac{2}{.5}$
Steve Wilson, 1/13
Raytown, MO
805 (2.2)
$\dfrac{8}{(2 - 1)\%} + 5$
Steve Wilson, 1/13
Raytown, MO
806 (3.4)
$\dfrac{ \dfrac{1}{.\overline{5}\%} - .\overline{8}}{.\overline{2}}$
Paolo Pellegrini, 6/13
Martina Franca, Italy
807 (2.0)
$812 - 5$
Sean Collins, 3/10
Overland Park, KS
808 (3.6)
$\dfrac{(5 + 1)!}{.\overline{8}} - 2$
Steve Wilson, 4/13
Raytown, MO
809 (3.4)
$\dfrac{.\overline{8} + 1\%}{.2 \times .\overline{5}\%}$
Paolo Pellegrini, 6/13
Martina Franca, Italy
810 (2.0)
$81 \times 5 \times 2$
Meredith Rosenbaum, 8/11
Shawnee, KS
  811 (3.6)
$\left( \dfrac{\sqrt{5!}}{2} \right)^8 ‰ + 1$
Paolo Pellegrini, 6/13
Martina Franca, Italy
812 (3.6)
$\dfrac{(5 + 1)!}{.\overline{8}} + 2$
Steve Wilson, 4/13
Raytown, MO
813 (2.0)
$815 - 2$
Meredith Rosenbaum, 8/11
Shawnee, KS
814 (3.4)
$\dfrac{ \dfrac{1}{.\overline{5}\%} + .\overline{8}}{.\overline{2}}$
Paolo Pellegrini, 6/13
Martina Franca, Italy
815 (2.2)
$\dfrac{8.2}{1\%} - 5$
Steve Wilson, 1/13
Raytown, MO
816 (2.0)
$821 - 5$
Sean Collins, 5/10
Overland Park, KS
817 (2.6)
$812 + 5$
Meredith Rosenbaum, 8/11
Shawnee, KS
818 (3.0)
$\dfrac{1}{.\overline{2} \times .\overline{5}\%} + 8$
Paolo Pellegrini, 6/13
Martina Franca, Italy
819 (3.8)
$\dfrac{.8}{\sqrt[.1]{.5}} - .2$
Paolo Pellegrini, 6/13
Martina Franca, Italy
820 (2.4)
$\dfrac{ \dfrac{8}{.2} + 1}{5\%}$
Steve Wilson, 7/12
Raytown, MO
  821 (3.4)
$\sqrt{ \sqrt[.5]{821}}$
Paolo Pellegrini, 6/13
Martina Franca, Italy
822 (4.4)
$825 + \log(1\pm)$
Steve Wilson, 7/23
Lawrence, KS
823 (3.2)
$\dfrac{.\overline{8} + 2\%}{.\overline{1}\%} + 5$
Paolo Pellegrini, 6/13
Martina Franca, Italy
824 (2.0)
$825 - 1$
Mary Tuggle, 11/09
Kansas City, MO
825 (2.0)
$825 \times 1$
Edward Gonzales, 9/10
Lawrence, KS
826 (2.0)
$825 + 1$
Sean Collins, 3/10
Overland Park, KS
827 (3.2)
$\dfrac{.\overline{8} + (5 - 2)\%}{.\overline{1}\%}$
Paolo Pellegrini, 6/13
Martina Franca, Italy
828 (3.0)
$\dfrac{1 - 8\%}{.2 \times .\overline{5}\%}$
Paolo Pellegrini, 6/13
Martina Franca, Italy
829 (4.6)
$825 - \log(1\%\%)$
Steve Wilson, 7/23
Lawrence, KS
830 (2.2)
$\dfrac{85 - 2}{.1}$
Steve Wilson, 7/12
Raytown, MO
    832 (3.2)
$\dfrac{8}{1\%} + 2^5$
Paolo Pellegrini, 6/13
Martina Franca, Italy
833 (3.8)
$\dfrac{5 - 2 ‰}{( \sqrt{8 + 1} )! ‰}$
Paolo Pellegrini, 6/13
Martina Franca, Italy
  835 (2.8)
$\dfrac{5 + 1\%}{(.8 - .2)\%}$
Steve Wilson, 2/13
Raytown, MO
836 (2.8)
$\dfrac{8 + \dfrac{.2}{.\overline{5}}}{1\%}$
Steve Wilson, 2/13
Raytown, MO
  838 (3.2)
$(8 - 1) \times 5! - 2$
Paolo Pellegrini, 6/13
Martina Franca, Italy
839 (3.4)
$(8 - 2)! + 5! - 1$
Paolo Pellegrini, 6/13
Martina Franca, Italy
840 (2.0)
$21 \times 8 \times 5$
Steve Wilson, 7/12
Raytown, MO
  841 (3.2)
$\sqrt[.5]{28 + 1}$
Steve Wilson, 4/13
Raytown, MO
842 (3.2)
$(8 - 1) \times 5! + 2$
Paolo Pellegrini, 6/13
Martina Franca, Italy
843 (3.2)
$\dfrac{.\overline{8} + 5\%}{.\overline{1}\%} - 2$
Paolo Pellegrini, 6/13
Martina Franca, Italy
844 (3.8)
$\dfrac{.\overline{8} + .2\%}{(.1 + \overline{5}\%)\%}$
Paolo Pellegrini, 6/13
Martina Franca, Italy
845 (2.8)
$\dfrac{1.\overline{8}}{.\overline{2}\%} - 5$
Steve Wilson, 2/13
Raytown, MO
846 (3.0)
$\dfrac{ \dfrac{1}{.\overline{5}\%} + 8}{.\overline{2}}$
Paolo Pellegrini, 6/13
Martina Franca, Italy
847 (3.2)
$\dfrac{.\overline{8} + 5\%}{.\overline{1}\%} + 2$
Paolo Pellegrini, 6/13
Martina Franca, Italy
848 (2.2)
$\dfrac{8.5}{1\%} - 2$
Steve Wilson, 2/13
Raytown, MO
849 (2.0)
$851 - 2$
Sean Collins, 4/10
Overland Park, KS
850 (2.2)
$\dfrac{51}{(8 - 2)\%}$
Steve Wilson, 7/12
Raytown, MO
  851 (2.0)
$852 - 1$
Mary Tuggle, 11/09
Kansas City, MO
852 (2.0)
$\dfrac{852}{1}$
Meredith Rosenbaum, 10/11
Shawnee, KS
853 (2.0)
$851 + 2$
Sean Collins, 4/10
Overland Park, KS
854 (3.2)
$(5! + 2) \times (8 - 1)$
Steve Wilson, 4/13
Raytown, MO
855 (2.8)
$\dfrac{1.\overline{8}}{.\overline{2}\%} + 5$
Steve Wilson, 2/13
Raytown, MO
856 (3.2)
$\dfrac{2 \times (.\overline{5} - 8\%)}{.\overline{1}\%}$
Paolo Pellegrini, 6/13
Martina Franca, Italy
  858 (3.6)
$\dfrac{82}{.\overline{1}} + 5!$
Paolo Pellegrini, 6/13
Martina Franca, Italy
  860 (2.8)
$\dfrac{ \dfrac{1}{.\overline{5}\%} - 8}{.2}$
Steve Wilson, 7/12
Raytown, MO
    862 (3.8)
$\dfrac{.8 \times 5!}{.\overline{1}} - 2$
Paolo Pellegrini, 6/13
Martina Franca, Italy
863 (3.2)
$\dfrac{.\overline{8} + (5 + 2)\%}{.\overline{1}\%}$
Paolo Pellegrini, 6/13
Martina Franca, Italy
864 (2.8)
$\dfrac{12}{(.\overline{8} + .5)\%}$
Steve Wilson, 2/13
Raytown, MO
865 (3.6)
$5! \times (8 - 2)!\% + 1$
Paolo Pellegrini, 6/13
Martina Franca, Italy
866 (3.8)
$\dfrac{.8 \times 5!}{.\overline{1}} + 2$
Paolo Pellegrini, 6/13
Martina Franca, Italy
  868 (3.8)
$(.\overline{2} - 5\%) \times (8 - 1)!$
Paolo Pellegrini, 6/13
Martina Franca, Italy
  870 (2.2)
$\dfrac{85 + 2}{.1}$
Steve Wilson, 7/12
Raytown, MO
    872 (3.8)
$5! \times ((2 + 1)!)!\% + 8$
Paolo Pellegrini, 6/13
Martina Franca, Italy
  874 (2.4)
$\dfrac{5 + 2}{.8\%} - 1$
Steve Wilson, 2/13
Raytown, MO
875 (2.4)
$\dfrac{5 + 2}{.8\%} \times 1$
Steve Wilson, 2/13
Raytown, MO
876 (2.4)
$\dfrac{5 + 2}{.8\%} + 1$
Steve Wilson, 7/12
Raytown, MO
    879 (3.8)
$5! \times 8 - .\overline{1}^{-2}$
Paolo Pellegrini, 6/13
Martina Franca, Italy
880 (3.4)
$\dfrac{.1\overline{2}}{(.\overline{8} + .5)\%\%}$
Paolo Pellegrini, 6/13
Martina Franca, Italy
    882 (3.6)
$\dfrac{\sqrt{ \sqrt{21^8}}}{.5}$
Paolo Pellegrini, 6/13
Martina Franca, Italy
  884 (2.8)
$\dfrac{ \dfrac{1}{.\overline{2}\%} - 8}{.5}$
Steve Wilson, 7/12
Raytown, MO
           
    892 (2.8)
$\dfrac{1}{.2 \times .\overline{5}\%} - 8$
Steve Wilson, 2/13
Raytown, MO
    895 (2.2)
$\dfrac{18}{2\%} - 5$
Steve Wilson, 2/13
Raytown, MO
896 (2.8)
$\left( \dfrac{2}{.\overline{1}\%} - 8 \right) \times .5$
Steve Wilson, 2/13
Raytown, MO
      900 (2.2)
$\dfrac{5 + \dfrac82}{1\%}$
Steve Wilson, 7/12
Raytown, MO
        904 (2.8)
$\left( \dfrac{2}{.\overline{1}\%} + 8 \right) \times .5$
Steve Wilson, 2/13
Raytown, MO
905 (2.2)
$\dfrac{18}{2\%} + 5$
Steve Wilson, 2/13
Raytown, MO
    908 (2.8)
$\dfrac{1}{.2 \times .\overline{5}\%} + 8$
Steve Wilson, 2/13
Raytown, MO
  910 (2.0)
$182 \times 5$
Steve Wilson, 7/12
Raytown, MO
            916 (2.8)
$\dfrac{ \dfrac{1}{.\overline{2}\%} + 8}{.5}$
Steve Wilson, 2/13
Raytown, MO
  918 (3.6)
$.1^{-5}\% - 82$
Steve Wilson, 4/13
Raytown, MO
  920 (2.4)
$\dfrac{5 \times 2 - .8}{1\%}$
Steve Wilson, 7/12
Raytown, MO
          925 (2.2)
$\dfrac{18.5}{2\%}$
Steve Wilson, 7/12
Raytown, MO
        930 (3.8)
$\dfrac{1.8}{.\overline{2}\%} + 5!$
Steve Wilson, 7/23
Lawrence, KS
          935 (3.4)
$5! \times (8 - .2) - 1$
Steve Wilson, 4/13
Raytown, MO
936 (2.0)
$52 \times 18$
Steve Wilson, 2/13
Raytown, MO
937 (3.4)
$5! \times (8 - .2) + 1$
Steve Wilson, 4/13
Raytown, MO
  939 (3.2)
$5! \times 8 - 21$
Steve Wilson, 4/13
Raytown, MO
940 (2.8)
$\dfrac{ \dfrac{1}{.\overline{5}\%} + 8}{.2}$
Steve Wilson, 7/12
Raytown, MO
    942 (3.6)
$5! \times 8 - \dfrac{2}{.\overline{1}}$
Steve Wilson, 4/13
Raytown, MO
943 (3.2)
$(5! - 2) \times 8 - 1$
Steve Wilson, 4/13
Raytown, MO
944 (3.2)
$(5! - 2) \times 8 \times 1$
Steve Wilson, 4/13
Raytown, MO
945 (3.2)
$(5! - 2) \times 8 + 1$
Steve Wilson, 4/13
Raytown, MO
946 (3.4)
$5! \times (8 - .1) - 2$
Steve Wilson, 4/13
Raytown, MO
  948 (3.2)
$5! \times 8 - 12$
Steve Wilson, 4/13
Raytown, MO
  950 (2.4)
$\dfrac{8 + 2 - .5}{1\%}$
Steve Wilson, 7/12
Raytown, MO
    952 (3.2)
$(5! - 1^2) \times 8$
Steve Wilson, 4/13
Raytown, MO
  954 (3.2)
$(5! - 1) \times 8 + 2$
Steve Wilson, 4/13
Raytown, MO
955 (3.4)
$5! \times 8 - \dfrac{1}{.2}$
Steve Wilson, 4/13
Raytown, MO
  957 (3.2)
$5! \times 8 - 2 - 1$
Steve Wilson, 4/13
Raytown, MO
958 (3.2)
$5! \times 8 - 2 \times 1$
Steve Wilson, 4/13
Raytown, MO
959 (3.2)
$5! \times 8 - 2 + 1$
Steve Wilson, 4/13
Raytown, MO
960 (2.2)
$5 \times \left( \dfrac{2}{1\%} - 8 \right)$
Steve Wilson, 7/12
Raytown, MO
  961 (3.2)
$5! \times 8 + 2 - 1$
Steve Wilson, 4/13
Raytown, MO
962 (3.2)
$5! \times 8 + 2 \times 1$
Steve Wilson, 4/13
Raytown, MO
963 (3.2)
$5! \times 8 + 2 + 1$
Steve Wilson, 4/13
Raytown, MO
964 (4.0)
$.1^{-5}\% - \dfrac{8}{.\overline{2}}$
Steve Wilson, 4/13
Raytown, MO
965 (3.4)
$5! \times 8 + \dfrac{1}{.2}$
Steve Wilson, 4/13
Raytown, MO
966 (3.2)
$(5! + 1) \times 8 - 2$
Steve Wilson, 4/13
Raytown, MO
  968 (3.2)
$(5! + 1^2) \times 8$
Steve Wilson, 4/13
Raytown, MO
  970 (3.2)
$(5! + 1) \times 8 + 2$
Steve Wilson, 4/13
Raytown, MO
    972 (3.2)
$5! \times 8 + 12$
Sean Collins, 1/10
Overland Park, KS
  974 (3.2)
$5! \times 8.1 + 2$
Steve Wilson, 4/13
Raytown, MO
975 (2.6)
$\dfrac{2 - 5\%}{(1 - .8)\%}$
Steve Wilson, 7/12
Raytown, MO
976 (3.2)
$(5! + 2) \times 8 \times 1$
Harman Tiwana, 12/12
Lenexa, KS
977 (3.2)
$(5! + 2) \times 8 + 1$
Harman Tiwana, 12/12
Lenexa, KS
978 (3.6)
$5! \times 8 + \dfrac{2}{.\overline{1}}$
Steve Wilson, 4/13
Raytown, MO
  980 (3.4)
$5! \times 8 + \dfrac{2}{.1}$
Steve Wilson, 4/13
Raytown, MO
  981 (3.2)
$5! \times 8 + 21$
Steve Wilson, 4/13
Raytown, MO
  983 (3.2)
$5! \times 8.2 - 1$
Steve Wilson, 4/13
Raytown, MO
984 (2.2)
$2 \times \left( \dfrac{5}{1\%} - 8 \right)$
Steve Wilson, 7/12
Raytown, MO
985 (3.2)
$5! \times 8.2 + 1$
Steve Wilson, 4/13
Raytown, MO
        990 (3.6)
$.1^{-5}\% - 8 - 2$
Steve Wilson, 4/13
Raytown, MO
    992 (2.2)
$\dfrac{5 \times 2}{1\%} - 8$
Steve Wilson, 2/13
Raytown, MO
  994 (3.6)
$.1^{-5}\% - 8 + 2$
Steve Wilson, 4/13
Raytown, MO
995 (2.2)
$\dfrac{8 + 2}{1\%} - 5$
Steve Wilson, 2/13
Raytown, MO
996 (2.4)
$\dfrac{ \dfrac{1}{5\%\%} - 8}{2}$
Steve Wilson, 2/13
Raytown, MO
997 (4.6)
$.1^{-5}\% - \log_2 8$
Steve Wilson, 4/13
Raytown, MO
998 (3.8)
$.1^{-5}\% - \sqrt{ \dfrac82}$
Steve Wilson, 4/13
Raytown, MO
999 (4.0)
$.1^{-5}\% - .8 - .2$
Steve Wilson, 4/13
Raytown, MO
1000 (2.0)
$125 \times 8$
Sean Collins, 1/10
Overland Park, KS
        1004 (2.4)
$\dfrac{ \dfrac{1}{5\%\%} + 8}{2}$
Steve Wilson, 8/13
Lawrence, KS
1005 (2.2)
$\dfrac{8 + 2}{1\%} + 5$
Steve Wilson, 8/13
Lawrence, KS
    1008 (2.2)
$5 \times \dfrac{2}{1\%} + 8$
Steve Wilson, 8/13
Lawrence, KS
   
            1016 (2.2)
$2 \times \left( \dfrac{5}{1\%} + 8 \right)$
Steve Wilson, 8/13
Lawrence, KS
      1020 (2.0)
$85 \times 12$
Sean Collins, 4/10
Overland Park, KS
          1025 (2.6)
$\dfrac{2 + 5\%}{(1 - .8)\%}$
Steve Wilson, 8/13
Lawrence, KS
         
          1035 (2.8)
$\dfrac{1.5 + .8}{.\overline{2}\%}$
Steve Wilson, 8/13
Lawrence, KS
1036 (2.0)
$518 \times 2$
Edward Gonzales, 9/10
Lawrence, KS
      1040 (2.2)
$5 \times \left( \dfrac{2}{1\%} + 8 \right)$
Steve Wilson, 8/13
Lawrence, KS
        1044 (2.4)
$58 \times \dfrac{2}{.\overline{1}}$
Steve Wilson, 8/13
Lawrence, KS
          1050 (2.2)
$\dfrac{8 + \dfrac52}{1\%}$
Steve Wilson, 8/13
Lawrence, KS
            1056 (2.8)
$8 \times \dfrac{.2}{.\overline{15}\%}$
Steve Wilson, 8/13
Lawrence, KS
      1060 (2.8)
$\dfrac{8 - 2.\overline{1}}{.\overline{5}\%}$
Steve Wilson, 8/13
Lawrence, KS
    1062 (2.6)
$\dfrac{8 - 2.1}{.\overline{5}\%}$
Steve Wilson, 8/13
Lawrence, KS
               
          1075 (2.8)
$\dfrac{2 - .8}{.\overline{1}\%} - 5$
Steve Wilson, 8/13
Lawrence, KS
      1079 (2.8)
$\dfrac{8 - 2}{.\overline{5}\%} - 1$
Steve Wilson, 8/13
Lawrence, KS
1080 (2.4)
$\dfrac{5 \times 2 + .8}{1\%}$
Steve Wilson, 8/13
Lawrence, KS
  1081 (2.8)
$\dfrac{8 - 2}{.\overline{5}\%} + 1$
Steve Wilson, 8/13
Lawrence, KS
      1085 (2.8)
$\dfrac{2 - .8}{.\overline{1}\%} + 5$
Steve Wilson, 8/13
Lawrence, KS
        1090 (2.0)
$218 \times 5$
Steve Wilson, 8/13
Lawrence, KS
          1095 (2.6)
$\dfrac{2}{.\overline{18}\%} - 5$
Steve Wilson, 8/13
Lawrence, KS
    1098 (2.6)
$\dfrac{8.1 - 2}{.\overline{5}\%}$
Steve Wilson, 8/13
Lawrence, KS
  1100 (2.2)
$\dfrac{8 \times 2 - 5}{1\%}$
Steve Wilson, 8/13
Lawrence, KS
          1105 (2.6)
$\dfrac{2}{.\overline{18}\%} + 5$
Steve Wilson, 8/13
Lawrence, KS
         
                    1120 (2.6)
$5 \times \left( \dfrac{2}{.\overline{8}\%} - 1 \right)$
Steve Wilson, 10/13
Lawrence, KS
      1123 (2.6)
$2 \times \left( \dfrac{5}{.\overline{8}\%} - 1 \right)$
Steve Wilson, 10/13
Lawrence, KS
1124 (2.6)
$2 \times \dfrac{5}{.\overline{8}\%} - 1$
Steve Wilson, 10/13
Lawrence, KS
1125 (2.4)
$\dfrac{5 \times 2 - 1}{.8\%}$
Steve Wilson, 10/13
Lawrence, KS
1126 (2.6)
$2 \times \dfrac{5}{.\overline{8}\%} + 1$
Steve Wilson, 10/13
Lawrence, KS
1127 (2.6)
$2 \times \left( \dfrac{5}{.\overline{8}\%} + 1 \right)$
Steve Wilson, 10/13
Lawrence, KS
    1130 (2.6)
$5 \times \left( \dfrac{2}{.\overline{8}\%} + 1 \right)$
Steve Wilson, 10/13
Lawrence, KS
                    1150 (2.2)
$\dfrac{15 + 8}{2\%}$
Steve Wilson, 10/13
Lawrence, KS
    1152 (2.8)
$(1 - .2) \times \dfrac{8}{.\overline{5}\%}$
Steve Wilson, 10/13
Lawrence, KS
              1160 (2.2)
$5.8 \times \dfrac{2}{1\%}$
Steve Wilson, 10/13
Lawrence, KS
    1162 (2.0)
$581 \times 2$
Edward Gonzales, 9/10
Lawrence, KS
              1170 (2.6)
$\dfrac{ \dfrac85 + 1}{.\overline{2}\%}$
Steve Wilson, 10/13
Lawrence, KS
                    1180 (2.4)
$\dfrac{8 - 2.1}{.5\%}$
Steve Wilson, 10/13
Lawrence, KS
          1185 (2.6)
$\dfrac{1 - 5.2\%}{8\%\%}$
Steve Wilson, 10/13
Lawrence, KS
        1190 (2.8)
$\dfrac{1 - (5 - .2)\%}{8\%\%}$
Steve Wilson, 10/13
Lawrence, KS
          1195 (2.6)
$\dfrac{2 - .8}{.1\%} - 5$
Steve Wilson, 10/13
Lawrence, KS
    1198 (2.4)
$\dfrac{1}{8\%\%} - 52$
Steve Wilson, 10/13
Lawrence, KS
1199 (2.4)
$\dfrac{8 - 2}{.5\%} - 1$
Steve Wilson, 10/13
Lawrence, KS
1200 (2.4)
$\dfrac{8 - 2}{.5\%} \times 1$
Steve Wilson, 10/13
Lawrence, KS
  1201 (2.4)
$\dfrac{8 - 2}{.5\%} + 1$
Steve Wilson, 10/13
Lawrence, KS
      1205 (2.6)
$\dfrac{2 - .8}{.1\%} + 5$
Steve Wilson, 10/13
Lawrence, KS
         
            1216 (2.0)
$152 \times 8$
Sean Collins, 1/10
Overland Park, KS
  1218 (2.0)
$58 \times 21$
Ambra Robinson, 5/11
Lawrence, KS
   
  1601 (3.0)
$(5 \times 8)^2 + 1$
Kashmira Sayani, 1/17
Overland Park, KS
                 
                    1620 (3.0)
$18^2 \times 5$
Edward Gonzales, 12/10
Lawrence, KS
                    1630 (2.0)
$815 \times 2$
Ambra Robinson, 5/11
Lawrence, KS
                  1639 (2.2)
$\dfrac{82}{5\%} - 1$
Yi Zheng, 5/16
Olathe, KS
1640 (2.2)
$\dfrac{82}{5\%} \times 1$
Yi Zheng, 5/16
Olathe, KS
  1641 (2.2)
$\dfrac{82}{5\%} + 1$
Yi Zheng, 5/16
Olathe, KS
                 
    1702 (2.0)
$851 \times 2$
Michele Gaston, 10/10
Olathe, KS
               
                    1720 (2.0)
$215 \times 8$
Sean Collins, 2/10
Overland Park, KS
                    1750 (2.2)
$(8 - 1) \times \dfrac{5}{2\%}$
Edward Gonzales, 10/10
Lawrence, KS
          1785 (2.0)
$85 \times 21$
Sean Collins, 3/10
Overland Park, KS
         
                    1800 (3.0)
$15^2 \times 8$
John Tader, 9/11
Olathe, KS
                  1919 (3.2)
$5! \times 8 \times 2 - 1$
Leif Muhammad, 3/14
Kansas City, MO
 
                    2000 (2.2)
$8 \times 1 \times \dfrac{5}{2\%}$
Edward Gonzales, 10/10
Lawrence, KS
                2008 (2.0)
$251 \times 8$
Sean Collins, 2/10
Overland Park, KS
   
          2025 (2.0)
$81 \times 25$
Michele Gaston, 10/10
Olathe, KS
         
      2593 (3.0)
$51^2 - 8$
Ambra Robinson, 2/11
Lawrence, KS
             
                  2609 (3.0)
$51^2 + 8$
Ambra Robinson, 2/11
Lawrence, KS
 
                  2899 (2.2)
$\dfrac{58}{2\%} - 1$
Yi Zheng, 5/16
Olathe, KS
 
  2901 (2.2)
$\dfrac{58}{2\%} + 1$
Yi Zheng, 5/16
Olathe, KS
                 
        3264 (3.0)
$8^2 \times 51$
Edward Gonzales, 12/10
Lawrence, KS
           
      3363 (3.0)
$58^2 - 1$
John Tader, 9/11
Olathe, KS
            3370 (3.4)
$\dfrac{8! + 5!}{12}$
Sean Collins, 3/10
Overland Park, KS
                    4060 (2.0)
$812 \times 5$
Edward Gonzales, 9/10
Lawrence, KS
          4105 (2.0)
$821 \times 5$
Edward Gonzales, 9/10
Lawrence, KS
         
                4168 (2.0)
$521 \times 8$
Sean Collins, 3/10
Overland Park, KS
   
    4182 (2.0)
$82 \times 51$
Michele Gaston, 10/10
Olathe, KS
               
          7225 (3.0)
$85^2 \times 1$
Edward Gonzales, 12/10
Lawrence, KS
7226 (3.0)
$85^2 + 1$
Michele Gaston, 10/10
Olathe, KS
       
                    8000 (2.2)
$8 \times 5 \times \dfrac{2}{1\%}$
Edward Gonzales, 10/10
Lawrence, KS
    8192 (3.0)
$8^{5-1} \times 2$
John Tader, 9/11
Olathe, KS
               
                    9600 (3.2)
$\dfrac{8!}{21} \times 5$
Sean Collins, 2/10
Overland Park, KS
                    11600 (2.2)
$58 \times \dfrac{2}{1\%}$
Seth Musser, 11/10
Overland Park, KS
                    12500 (2.4)
$\dfrac{2}{8\%} \times \dfrac{5}{1\%}$
Edward Gonzales, 10/10
Lawrence, KS
                20808 (3.0)
$51^2 \times 8$
Edward Gonzales, 11/10
Lawrence, KS
   
        24964 (3.0)
$158^2$
Joseph Geraci, 11/11
Leawood, KS
           
        31104 (3.0)
$\dfrac{12^5}{8}$
Ambra Robinson, 5/11
Lawrence, KS
           
              59047 (3.2)
$\sqrt{81^5} - 2$
Chelsea Kiddle, 10/12
Leawood, KS
     
  59051 (3.2)
$\sqrt{81^5} + 2$
Chelsea Kiddle, 10/12
Leawood, KS
                 
                    100000 (3.0)
$(8 + 2 \times 1)^5$
Mary Tuggle, 9/09
Kansas City, MO
  100001 (3.0)
$(2 + 8)^5 + 1$
Stephen Inglin, 9/09
DeSoto, KS
                 
                    160000 (3.2)
$\dfrac{ (5\times 8)^2}{1\%}$
Seth Musser, 11/10
Overland Park, KS
  161051 (3.0)
$(8 + 2 + 1)^5$
Mary Tuggle, 9/09
Kansas City, MO
                 
        248824 (3.0)
$12^5 - 8$
Ambra Robinson, 2/11
Lawrence, KS
           
                    248840 (3.0)
$12^5 + 8$
Ambra Robinson, 2/11
Lawrence, KS
          295245 (3.4)
$\dfrac{ \sqrt{81^5}}{.2}$
Seth Musser, 11/10
Overland Park, KS
         
        390624 (3.2)
$\sqrt{25^8} - 1$
Chelsea Kiddle, 10/12
Leawood, KS
  390626 (3.2)
$\sqrt{25^8} + 1$
Chelsea Kiddle, 10/12
Leawood, KS
390627 (3.0)
$5^8 + 2 \times 1$
Joseph Geraci, 11/11
Leawood, KS
390628 (3.0)
$5^8 + 2 + 1$
Joseph Geraci, 11/11
Leawood, KS
   
            393216 (3.0)
$8^5 \times 12$
Edward Gonzales, 11/10
Lawrence, KS
       
    604802 (3.2)
$15 \times 8! + 2$
Obada Albadawi, 5/16
Overland Park, KS
               
                688128 (3.0)
$8^5 \times 21$
Edward Gonzales, 11/10
Lawrence, KS
   
                    781250 (3.0)
$5^8 \times 2 \times 1$
Joseph Geraci, 11/11
Leawood, KS
  781251 (3.0)
$5^8 \times 2 + 1$
Joseph Geraci, 11/11
Leawood, KS
                 
                    800000 (2.6)
$\dfrac{8}{1\% \times 2\% \times 5\%}$
Edward Gonzales, 10/10
Lawrence, KS
        944784 (3.0)
$\dfrac{18^5}{2}$
Ambra Robinson, 5/11
Lawrence, KS
           
            1889566 (3.0)
$18^5 - 2$
Ambra Robinson, 5/11
Lawrence, KS
       
            3779136 (3.0)
$18^5 \times 2$
Edward Gonzales, 12/10
Lawrence, KS
       
          8203125 (3.0)
$5^8 \times 21$
Edward Gonzales, 11/10
Lawrence, KS
         
            16777216 (3.0)
$(5 + 2 + 1)^8$
Stephen Inglin, 9/09
DeSoto, KS
       
                  17210369 (3.0)
$28^5 + 1$
Tyler Cox, 9/09
Olathe, KS
 
                    20643840 (3.2)
$512 \times 8!$
Obada Albadawi, 5/16
Overland Park, KS
                214990848 (3.2)
$12^8 \times .5$
Chelsea Kiddle, 10/12
Leawood, KS
   
          479001515 (3.2)
$12! - 85$
Obada Albadawi, 5/16
Overland Park, KS
         
          479001685 (3.2)
$12! + 85$
Obada Albadawi, 5/16
Overland Park, KS
         
                    2149908480 (3.0)
$12^8 \times 5$
Edward Gonzales, 11/10
Lawrence, KS
    3707398432 (3.0)
$82^5 \times 1$
Edward Gonzales, 12/10
Lawrence, KS
               
                34359738368 (3.0)
$128^5$
Jessie Shore, 1/11
Lawrence, KS
   
                    googol (3.6)
$.1 ^{-\sqrt[.5]{2+8}}$
Ralph Jeffords, 10/09
Centreville, VA
                    googolplex (3.8)
$(2+8) ^{ \sqrt[-5\%]{1\% ‰}}$
Ralph Jeffords, 10/09
Centreville, VA

Page 1 (1-400), Page 2 (401-800), Page 3 (801+).