\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} \DeclareMathOperator{\antilog}{antilog} \)

Integermania!

First Four Evens

Using one copy each of the digits 2, 4, 6, and 8, and any standard operations, create each of the positive integers. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201-1600), Page 5 (1601-2000), Page 6 (2001-2400), Page 7 (2401-2800), Page 8 (2801-16000), Page 41 (16001+).

  801 (3.6)
$\dfrac{6! - 4\times 2}{.\overline{8}}$
Steve Wilson, 11/22
Lawrence, KS
802 (2.2)
$\dfrac{48}{6\%} + 2$
Steve Wilson, 11/22
Lawrence, KS
803 (3.6)
$8! \times 2\% + .6 - 4$
Steve Wilson, 11/22
Lawrence, KS
804 (3.4)
$6! + \sqrt{84^2}$
Steve Wilson, 11/22
Lawrence, KS
805 (3.8)
$8! \times 2\% + .6 - \sqrt{4}$
Steve Wilson, 11/22
Lawrence, KS
806 (3.2)
$6! + 84 + 2$
Jordan May, 11/15
Overland Park, KS
807 (3.6)
$8! \times (4 - 2)\% + .6$
Steve Wilson, 11/22
Lawrence, KS
808 (3.6)
$\dfrac{6!}{.\overline{8}} - 4 + 2$
Steve Wilson, 11/22
Lawrence, KS
809 (3.8)
$8! \times 2\% + .6 + \sqrt{4}$
Steve Wilson, 11/22
Lawrence, KS
810 (2.8)
$(8 - 2) \times \dfrac{.6}{.\overline{4}\%}$
Steve Wilson, 11/22
Lawrence, KS
  811 (3.4)
$8! \times 2\% + 4.6$
Steve Wilson, 11/22
Lawrence, KS
812 (3.6)
$8! \times 2\% - .4 + 6$
Steve Wilson, 11/22
Lawrence, KS
813 (4.4)
$\dfrac{6!}{.\overline{8}} + \sqrt{\dfrac{\sqrt{4}}{.\overline{2}}}$
Steve Wilson, 4/23
Lawrence, KS
814 (3.8)
$\dfrac{6!}{.\overline{8}} + 2 + \sqrt{4}$
Steve Wilson, 4/23
Lawrence, KS
815 (3.8)
$\dfrac{6!}{.\overline{8}} + \dfrac{2}{.4}$
Steve Wilson, 4/23
Lawrence, KS
816 (3.2)
$\dfrac{68 \times 4!}{2}$
Bruno Biazetto, 1/17
Overland Park, KS
817 (4.8)
$6! + \sqrt{\antilog 4} - \log_2{8}$
Steve Wilson, 2/24
Lawrence, KS
818 (2.0)
$824 - 6$
Kendra Alsup, 2/16
Olathe, KS
819 (3.6)
$\dfrac{6! + 4 \times 2}{.\overline{8}}$
Steve Wilson, 4/23
Lawrence, KS
820 (2.0)
$82 \times (4 + 6)$
Lawrence Ombasa, 1/16
Overland Park, KS
  821 (4.0)
$6! + \sqrt{(8\pm)^{-2}\phantom.} - 4!$
Steve Wilson, 2/24
Lawrence, KS
822 (2.0)
$826 - 4$
Jonathan Frank, 10/22
Rye, NY
823 (4.6)
$824 - \cos(6!^\circ)$
Steve Wilson, 2/24
Lawrence, KS
824 (3.2)
$826 - \sqrt{4}$
Jonathan Frank, 11/22
Rye, NY
825 (2.2)
$\dfrac{64 + 2}{8\%}$
Steve Wilson, 11/22
Lawrence, KS
826 (3.4)
$\sqrt{\sqrt{826^4}}$
Steve Wilson, 4/23
Lawrence, KS
827 (4.6)
$824 + \ln\sqrt{\exp 6}$
Steve Wilson, 2/24
Lawrence, KS
828 (3.2)
$826 + \sqrt{4}$
Jonathan Frank, 1/22
Rye, NY
829 (4.8)
$826 + \coth\ln\sqrt{\sqrt{4}}$
Steve Wilson, 2/24
Lawrence, KS
830 (2.0)
$826 + 4$
Carson Tate, 12/15
Overland Park, KS
  831 (3.8)
$8! \times 2\% + 4! + .6$
Steve Wilson, 4/23
Lawrence, KS
832 (2.0)
$26 \times 8 \times 4$
Steve Wilson, 11/22
Lawrence, KS
833 (2.4)
$\dfrac{ \dfrac{4}{8\%\%} - 2}{6}$
Steve Wilson, 11/22
Lawrence, KS
834 (3.4)
$\dfrac{8!}{4! \times 2} - 6$
Jonathan Frank, 11/22
Rye, NY
835 (3.8)
$\dfrac{6! + 4!}{.\overline{8}} - 2$
Steve Wilson, 4/23
Lawrence, KS
836 (2.0)
$842 - 6$
Douglas Shamlin Jr., 1/17
Highland, MD
837 (3.6)
$\dfrac{6! + 24}{.\overline{8}}$
Steve Wilson, 4/23
Lawrence, KS
838 (3.2)
$862 - 4!$
Steve Wilson, 4/23
Lawrence, KS
839 (3.8)
$\dfrac{6! + 4!}{.\overline{8}} + 2$
Steve Wilson, 4/23
Lawrence, KS
840 (2.6)
$\dfrac{28}{(4 - .\overline{6})\%}$
Steve Wilson, 11/22
Lawrence, KS
  841 (3.8)
$6! + \sqrt{(8\pm)^{-2}\phantom8} - 4$
Steve Wilson, 2/24
Lawrence, KS
842 (3.6)
$6! + \left( \dfrac{4}{.8} \right)! + 2$
Steve Wilson, 4/23
Lawrence, KS
843 (4.0)
$6! + \sqrt{(8\pm)^{-2}\phantom.} - \sqrt{4}$
Steve Wilson, 2/24
Lawrence, KS
844 (2.0)
$846 - 2$
Daniel Hocklander, 1/16
Lawrence, KS
845 (3.8)
$6! + \sqrt{(8\pm)^{2-4}\phantom8}$
Steve Wilson, 2/24
Lawrence, KS
846 (3.2)
$\sqrt{846^2}$
Steve Wilson, 4/23
Lawrence, KS
847 (4.0)
$6! + \sqrt{(8\pm)^{-2}\phantom.} + \sqrt{4}$
Steve Wilson, 2/24
Lawrence, KS
848 (2.0)
$846 + 2$
Daniel Hocklander, 1/16
Lawrence, KS
849 (3.8)
$6! + \sqrt{(8\pm)^{-2}\phantom8} + 4$
Steve Wilson, 2/24
Lawrence, KS
850 (2.2)
$\dfrac{68}{2 \times 4\%}$
Jonathan Frank, 5/21
Rye, NY
  851 (4.0)
$\dfrac{6!\% - .2}{8\pmf} - 4!$
Steve Wilson, 2/24
Lawrence, KS
852 (3.6)
$\dfrac{6!}{.8} - 2 \times 4!$
Steve Wilson, 4/23
Lawrence, KS
853 (3.6)
$\dfrac{8!\% - 62}{.4}$
Steve Wilson, 1/24
Lawrence, KS
854 (4.4)
$864 - \sqrt{\antilog 2}$
Steve Wilson, 2/24
Lawrence, KS
855 (2.8)
$\dfrac{6 + 2 - .4}{.\overline{8}\%}$
Steve Wilson, 11/22
Lawrence, KS
856 (3.2)
$4! \times 6^2 - 8$
Steve Wilson, 4/23
Lawrence, KS
857 (4.2)
$\dfrac{6!\% + .4}{.\overline{8}\%} + 2$
Steve Wilson, 1/24
Lawrence, KS
858 (2.0)
$862 - 4$
Morgan Sievert, 1/17
Olathe, KS
859 (4.6)
$864 - \cot\arctan(.2)$
Steve Wilson, 2/24
Lawrence, KS
860 (3.2)
$862 - \sqrt{4}$
Jonathan Frank, 11/22
Rye, NY
  861 (4.6)
$864 - \coth\ln\sqrt{2}$
Steve Wilson, 2/24
Lawrence, KS
862 (2.0)
$864 - 2$
Sehrish Javed, 12/15
Overland Park, KS
863 (4.4)
$864 - (\antilog 2)\%$
Steve Wilson, 2/24
Lawrence, KS
864 (2.4)
$\dfrac{8 \times 6 \times 4}{.\overline{2}}$
Steve Wilson, 11/22
Lawrence, KS
865 (4.4)
$864 + (\antilog 2)\%$
Steve Wilson, 2/24
Lawrence, KS
866 (2.0)
$864 + 2$
Jordan May, 11/15
Overland Park, KS
867 (4.6)
$864 + \coth\ln\sqrt{2}$
Steve Wilson, 2/24
Lawrence, KS
868 (3.6)
$\dfrac{6! - 4!}{.8} - 2$
Steve Wilson, 4/23
Lawrence, KS
869 (4.0)
$6! + \sqrt{(8\pm)^{-2}\phantom.} + 4!$
Steve Wilson, 2/24
Lawrence, KS
870 (2.8)
$\dfrac{ \dfrac{8}{.\overline{4}} - .6}{2\%}$
Steve Wilson, 11/22
Lawrence, KS
  871 (3.8)
$\dfrac{6!\% - .2}{8\pmf} - 4$
Steve Wilson, 2/24
Lawrence, KS
872 (3.2)
$4! \times 6^2 + 8$
Steve Wilson, 4/23
Lawrence, KS
873 (2.6)
$\dfrac{ \dfrac{8}{4\%} - 6}{.\overline{2}}$
Steve Wilson, 11/22
Lawrence, KS
874 (3.6)
$\dfrac{6!}{.8} - 4! - 2$
Steve Wilson, 4/23
Lawrence, KS
875 (2.4)
$\dfrac{4 + \dfrac62}{.8\%}$
Jonathan Frank, 4/21
Rye, NY
876 (2.6)
$4 \times \left( \dfrac{2}{.\overline{8}\%} - 6 \right)$
Steve Wilson, 11/22
Lawrence, KS
877 (4.0)
$\dfrac{6!\% - .2}{8\pmf} + \sqrt{4}$
Steve Wilson, 2/24
Lawrence, KS
878 (3.6)
$\dfrac{6!}{.8} - 4! + 2$
Steve Wilson, 4/23
Lawrence, KS
879 (3.8)
$\dfrac{6!\% - .2}{8\pmf} + 4$
Steve Wilson, 2/24
Lawrence, KS
880 (3.4)
$\dfrac{6! - 4^2}{.8}$
Steve Wilson, 4/23
Lawrence, KS
  881 (4.8)
$\dfrac{4 + \coth\ln\sqrt{2}}{8\pmf} + 6$
Steve Wilson, 2/24
Lawrence, KS
882 (2.8)
$\dfrac{6 - 2 - 8\%}{.\overline{4}\%}$
Steve Wilson, 11/22
Lawrence, KS
883 (4.8)
$\coth\ln\coth\arsinh\left(\dfrac{42}{8 - 6}\right)$
Steve Wilson, 7/24
Lawrence, KS
884 (3.4)
$\dfrac{6!}{.8} - 4^2$
Steve Wilson, 4/23
Lawrence, KS
885 (2.8)
$\dfrac{ \dfrac{8}{.\overline{2}} - .6}{4\%}$
Steve Wilson, 11/22
Lawrence, KS
886 (3.2)
$862 + 4!$
Steve Wilson, 4/23
Lawrence, KS
887 (4.6)
$862 + \cot\arctan(4\%)$
Steve Wilson, 2/24
Lawrence, KS
888 (2.6)
$2 \times \left( \dfrac{4}{.\overline{8}\%} - 6 \right)$
Steve Wilson, 11/22
Lawrence, KS
889 (4.0)
$\dfrac{(8! - 6!)\%}{.\overline{4}} - 2$
Steve Wilson, 7/24
Lawrence, KS
890 (3.4)
$\dfrac{6! - 4 \times 2}{.8}$
Steve Wilson, 4/23
Lawrence, KS
  891 (4.0)
$\dfrac{6!}{.8} - \dfrac{\sqrt{4}}{.\overline{2}}$
Steve Wilson, 4/23
Lawrence, KS
892 (2.6)
$\dfrac{2 + 4}{.\overline{6}\%} - 8$
Steve Wilson, 11/22
Lawrence, KS
893 (3.4)
$\dfrac{6! - 4}{.8} - 2$
Steve Wilson, 4/23
Lawrence, KS
894 (2.6)
$\dfrac{2 \times 4}{.\overline{8}\%} - 6$
Steve Wilson, 11/22
Lawrence, KS
895 (3.6)
$\dfrac{6!}{.8} - \dfrac{2}{.4}$
Steve Wilson, 4/23
Lawrence, KS
896 (2.6)
$\dfrac{2 + 6}{.\overline{8}\%} - 4$
Steve Wilson, 11/22
Lawrence, KS
897 (2.6)
$\dfrac{ \dfrac{8}{.\overline{4}\%} - 6}{2}$
Steve Wilson, 11/22
Lawrence, KS
898 (3.4)
$\dfrac{6!}{.8} - 4 + 2$
Steve Wilson, 4/23
Lawrence, KS
899 (3.6)
$\dfrac{6!}{.8} - \dfrac{\sqrt{4}}{2}$
Steve Wilson, 4/23
Lawrence, KS
900 (2.2)
$\dfrac{8 + 6 + 4}{2\%}$
Douglas Shamlin Jr., 1/17
Highland, MD
  901 (3.6)
$\dfrac{6!}{.8} + \dfrac{\sqrt{4}}{2}$
Steve Wilson, 4/23
Lawrence, KS
902 (3.4)
$\dfrac{6!}{.8} + 4 - 2$
Steve Wilson, 4/23
Lawrence, KS
903 (2.4)
$\dfrac{ \dfrac{8}{.\overline{4}} + 6}{2}$
Steve Wilson, 4/23
Lawrence, KS
904 (2.6)
$\dfrac{6 + 2}{.\overline{8}\%} + 4$
Steve Wilson, 4/23
Lawrence, KS
905 (3.6)
$\dfrac{6!}{.8} + \dfrac{2}{.4}$
Steve Wilson, 4/23
Lawrence, KS
906 (2.6)
$\dfrac{4 \times 2}{.\overline{8}\%} + 6$
Steve Wilson, 4/23
Lawrence, KS
907 (3.4)
$\dfrac{6! + 4}{.8} + 2$
Steve Wilson, 4/23
Lawrence, KS
908 (2.6)
$\dfrac{4 + 2}{.\overline{6}\%} + 8$
Steve Wilson, 4/23
Lawrence, KS
909 (4.0)
$\dfrac{6!}{.8} + \dfrac{\sqrt{4}}{.\overline{2}}$
Steve Wilson, 4/23
Lawrence, KS
910 (3.4)
$\dfrac{6! + 4 \times 2}{.8}$
Steve Wilson, 4/23
Lawrence, KS
  911 (4.4)
$\dfrac{\sqrt{4} + .\overline{6}\%}{.\overline{2}\%} + 8$
Steve Wilson, 4/23
Lawrence, KS
912 (2.6)
$2 \times \left( \dfrac{4}{.\overline{8}\%} + 6 \right)$
Steve Wilson, 4/23
Lawrence, KS
913 (4.0)
$\dfrac{8!\%}{.\overline{4}} - .2 + 6$
Steve Wilson, 1/24
Lawrence, KS
914 (3.4)
$\dfrac{\sqrt{4}}{2\pmf} - 86$
Steve Wilson, 4/23
Lawrence, KS
915 (2.8)
$\dfrac{ \dfrac{8}{.\overline{2}} + .6}{4\%}$
Steve Wilson, 4/23
Lawrence, KS
916 (3.4)
$\dfrac{6!}{.8} + 4^2$
Steve Wilson, 4/23
Lawrence, KS
917 (4.8)
$\sqrt{\antilog 6} - 84 + (\antilog 2)\%$
Steve Wilson, 2/24
Lawrence, KS
918 (2.8)
$\dfrac{8 - 6 + 4\%}{.\overline{2}\%}$
Steve Wilson, 4/23
Lawrence, KS
919 (4.4)
$\dfrac{\sqrt{4}}{2\pmf} - \dfrac{6!\pmf}{.\overline{8}\%}$
Steve Wilson, 2/24
Lawrence, KS
920 (3.4)
$\dfrac{6! + 4^2}{.8}$
Steve Wilson, 4/23
Lawrence, KS
  921 (4.0)
$6! + \dfrac{2}{.\overline{8}\%} - 4!$
Steve Wilson, 2/24
Lawrence, KS
922 (3.6)
$\dfrac{6!}{.8} + 4! - 2$
Steve Wilson, 4/23
Lawrence, KS
923 (4.0)
$\dfrac{6!\% + .2}{8\pmf} - \sqrt{4}$
Steve Wilson, 7/24
Lawrence, KS
924 (2.6)
$4 \times \left( \dfrac{2}{.\overline{8}\%} + 6 \right)$
Steve Wilson, 4/23
Lawrence, KS
925 (2.6)
$\dfrac{2 \times 4 - .6}{.8\%}$
Steve Wilson, 4/23
Lawrence, KS
926 (3.6)
$\dfrac{6!}{.8} + 4! + 2$
Steve Wilson, 4/23
Lawrence, KS
927 (2.6)
$\dfrac{ \dfrac{8}{4\%} + 6}{.\overline{2}}$
Steve Wilson, 4/23
Lawrence, KS
928 (3.6)
$\dfrac{6! + 4!}{.8} - 2$
Steve Wilson, 4/23
Lawrence, KS
929 (3.8)
$\dfrac{6!\% + .2}{8\pmf} + 4$
Steve Wilson, 7/24
Lawrence, KS
930 (2.8)
$\dfrac{ \dfrac{8}{.\overline{4}} + .6}{2\%}$
Steve Wilson, 4/23
Lawrence, KS
  931 (4.8)
$\dfrac{6!}{.8} + \cosh(2 \times \arcosh 4)$
Steve Wilson, 7/24
Lawrence, KS
932 (3.4)
$\dfrac{\sqrt{4}}{2\pmf} - 68$
Steve Wilson, 4/23
Lawrence, KS
933 (3.8)
$\dfrac{8!\% - \dfrac{6}{.2}}{.4}$
Steve Wilson, 1/24
Lawrence, KS
934 (4.6)
$\dfrac{\sqrt{4\%} + .\overline{8}\%}{.\overline{2}\pmf} - 6$
Steve Wilson, 1/24
Lawrence, KS
935 (4.8)
$(\antilog 8)\%\pm - \dfrac{26}{.4}$
Steve Wilson, 7/24
Lawrence, KS
936 (2.0)
$468 \times 2$
Alondra Aviles Gallegos, 2/17
Kansas City, KS
937 (4.2)
$6! + \sqrt{.\overline{4}\%^{-2}} - 8$
Steve Wilson, 7/24
Lawrence, KS
938 (3.2)
$\sqrt[.2]{4} - 86$
Steve Wilson, 1/24
Lawrence, KS
939 (4.6)
$\dfrac{2.4}{(\csch\ln 8)\%} - 6$
Steve Wilson, 7/24
Lawrence, KS
940 (3.6)
$\dfrac{4! - 6 + .8}{2\%}$
Steve Wilson, 4/23
Lawrence, KS
  941 (3.8)
$6! + \dfrac{2}{.\overline{8}\%} - 4$
Steve Wilson, 2/24
Lawrence, KS
942 (3.4)
$\dfrac{6!}{.8} + 42$
Steve Wilson, 4/23
Lawrence, KS
943 (3.6)
$\dfrac{8!\% - 26}{.4}$
Steve Wilson, 1/24
Lawrence, KS
944 (3.8)
$\dfrac{\sqrt{4}}{2\pmf} - \dfrac{8!}{6!}$
Steve Wilson, 2/24
Lawrence, KS
945 (2.6)
$\dfrac{6 + 2.4}{.\overline{8}\%}$
Steve Wilson, 4/23
Lawrence, KS
946 (3.6)
$\dfrac{8!\%}{.4} - 62$
Steve Wilson, 1/24
Lawrence, KS
947 (4.0)
$6! + \dfrac{2}{.\overline{8}\%} + \sqrt{4}$
Steve Wilson, 2/24
Lawrence, KS
948 (3.6)
$\dfrac{6!}{.8} + 2 \times 4!$
Steve Wilson, 4/23
Lawrence, KS
949 (3.4)
$\sqrt[.2]{4} - \dfrac{6}{8\%}$
Steve Wilson, 1/24
Lawrence, KS
950 (2.4)
$\dfrac{ \dfrac{6}{.2} + 8}{4\%}$
Steve Wilson, 4/23
Lawrence, KS
  951 (4.6)
$\dfrac{2.4}{(\csch\ln 8)\%} + 6$
Steve Wilson, 7/24
Lawrence, KS
952 (3.4)
$6! + 2^8 - 4!$
Jonathan Frank, 11/22
Rye, NY
953 (4.8)
$\sqrt{\antilog 6} - 48 + (\antilog 2)\%$
Steve Wilson, 2/24
Lawrence, KS
954 (3.6)
$\dfrac{\sqrt{4} - 8\%}{2\pmf} - 6$
Steve Wilson, 4/23
Lawrence, KS
955 (4.4)
$\dfrac{6!}{\sqrt{.\overline{4}}} - \sqrt{(8\pm)^{-2}\phantom8}$
Steve Wilson, 2/24
Lawrence, KS
956 (3.2)
$\sqrt[.2]{4} - 68$
Steve Wilson, 1/24
Lawrence, KS
957 (3.6)
$\dfrac{\sqrt{4} - 86\pmf}{2\pmf}$
Steve Wilson, 4/23
Lawrence, KS
958 (3.6)
$\dfrac{8!}{4!} - 6! - 2$
Jonathan Frank, 11/22
Rye, NY
959 (4.6)
$\sqrt{\antilog 6} - \dfrac{82}{\sqrt{4}}$
Steve Wilson, 2/24
Lawrence, KS
960 (2.2)
$8 \times 6 \times \dfrac{4}{.2}$
Steve Wilson, 4/23
Lawrence, KS
  961 (3.6)
$\sqrt{\sqrt{\left(\dfrac{62}{\sqrt{4}}\right)^8}}$
Steve Wilson, 1/24
Lawrence, KS
962 (3.6)
$\dfrac{8!}{4!} - 6! + 2$
Jonathan Frank, 11/22
Rye, NY
963 (3.8)
$\dfrac{\sqrt{4} - 8\% + 6\pmf}{2\pmf}$
Steve Wilson, 4/23
Lawrence, KS
964 (3.8)
$\dfrac{\sqrt{4}}{2\pmf} - \sqrt{\sqrt{6^8}}$
Steve Wilson, 1/24
Lawrence, KS
965 (4.8)
$\dfrac{6!}{\sinh\ln 2} + \dfrac{4}{.8}$
Steve Wilson, 2/24
Lawrence, KS
966 (3.6)
$\dfrac{\sqrt{4} - 8\%}{2\pmf} + 6$
Steve Wilson, 4/23
Lawrence, KS
967 (4.8)
$\antilog \left(\dfrac62\right) - \cot\arctan(4\%) - 8$
Steve Wilson, 2/24
Lawrence, KS
968 (3.8)
$\dfrac{\sqrt{4}}{.\overline{2}\%} + 68$
Steve Wilson, 4/23
Lawrence, KS
969 (4.0)
$6! + \dfrac{2}{.\overline{8}\%} + 4!$
Steve Wilson, 2/24
Lawrence, KS
970 (2.4)
$\dfrac{ \dfrac{8}{4\%} - 6}{.2}$
Steve Wilson, 4/23
Lawrence, KS
  971 (4.6)
$\sqrt{\antilog 6} - \dfrac{2}{8\%} - 4$
Steve Wilson, 2/24
Lawrence, KS
972 (2.0)
$486 \times 2$
Joanna Ramirez, 2/16
Olathe, KS
973 (4.8)
$\antilog\left(\dfrac62\right) - \dfrac{4!}{.\overline{8}}$
Steve Wilson, 2/24
Lawrence, KS
974 (3.4)
$6! + 2^8 - \sqrt{4}$
Jonathan Frank, 11/22
Rye, NY
975 (2.8)
$\dfrac{ \dfrac{4}{.6} + 2}{.\overline{8}\%}$
Steve Wilson, 4/23
Lawrence, KS
976 (2.4)
$4 \times \left( \dfrac{2}{.8\%} - 6 \right)$
Steve Wilson, 4/23
Lawrence, KS
977 (4.8)
$\sqrt{\antilog 6} - \dfrac{2}{8\%} + \sqrt{4}$
Steve Wilson, 2/24
Lawrence, KS
978 (3.4)
$6! + 2^8 + \sqrt{4}$
Jonathan Frank, 11/22
Rye, NY
979 (4.6)
$\sqrt{\antilog 6} - \dfrac{2}{8\%} + 4$
Steve Wilson, 2/24
Lawrence, KS
980 (2.6)
$\dfrac{6 - 2 - 8\%}{.4\%}$
Steve Wilson, 4/23
Lawrence, KS
  981 (4.0)
$\dfrac{8!\%}{.4} - \dfrac{6}{.\overline{2}}$
Steve Wilson, 1/24
Lawrence, KS
982 (3.6)
$\dfrac{8!\%}{.4} - 26$
Steve Wilson, 1/24
Lawrence, KS
983 (4.6)
$\antilog\left(\dfrac62\right) - \dfrac{8}{\cosh\ln 4}$
Steve Wilson, 2/24
Lawrence, KS
984 (3.2)
$82 \times 6 \times \sqrt{4}$
Jake Karst, 2/17
Overland Park, KS
985 (2.4)
$\dfrac{ \dfrac{8}{2\%} - 6}{.4}$
Steve Wilson, 4/23
Lawrence, KS
986 (3.4)
$\dfrac{\sqrt{4}}{2\pmf} - 8 - 6$
Steve Wilson, 4/23
Lawrence, KS
987 (4.8)
$\ln\sqrt{\exp\left(\dfrac{8}{4\pmf} - 26\right)}$
Steve Wilson, 2/24
Lawrence, KS
988 (2.4)
$2 \times \left( \dfrac{4}{.8\%} - 6 \right)$
Steve Wilson, 4/23
Lawrence, KS
989 (3.6)
$\dfrac{\sqrt{4} - 6\pmf}{2\pmf} - 8$
Steve Wilson, 4/23
Lawrence, KS
990 (2.8)
$\dfrac{6 - 2 \times .8}{.\overline{4}\%}$
Steve Wilson, 4/23
Lawrence, KS
  991 (3.6)
$\dfrac{8!\% - 6}{.4} - 2$
Steve Wilson, 1/24
Lawrence, KS
992 (2.4)
$\dfrac{4 + 2}{.6\%} - 8$
Steve Wilson, 4/23
Lawrence, KS
993 (3.6)
$\dfrac{\sqrt{4} - (8 + 6)\pmf}{2\pmf}$
Steve Wilson, 4/23
Lawrence, KS
994 (2.4)
$\dfrac{4 \times 2}{.8\%} - 6$
Steve Wilson, 4/23
Lawrence, KS
995 (2.6)
$\dfrac{6 + 2 - 4\%}{.8\%}$
Steve Wilson, 4/23
Lawrence, KS
996 (2.4)
$\dfrac{6 + 2}{.8\%} - 4$
Steve Wilson, 4/23
Lawrence, KS
997 (2.4)
$\dfrac{ \dfrac{8}{.4\%} - 6}{2}$
Steve Wilson, 4/23
Lawrence, KS
998 (2.8)
$\dfrac{6 - 2 - .8\%}{.4\%}$
Steve Wilson, 4/23
Lawrence, KS
999 (3.6)
$\dfrac{\sqrt{4} - (8 - 6)\pmf}{2\pmf}$
Steve Wilson, 4/23
Lawrence, KS
1000 (2.4)
$(8 - 6) \times \dfrac{2}{.4\%}$
Steve Wilson, 4/23
Lawrence, KS
  1001 (3.6)
$\dfrac{\sqrt{4} + (8 - 6)\pmf}{2\pmf}$
Steve Wilson, 4/23
Lawrence, KS
1002 (2.8)
$\dfrac{8 - 6 + .4\%}{.2\%}$
Steve Wilson, 4/23
Lawrence, KS
1003 (2.4)
$\dfrac{ \dfrac{8}{.4\%} + 6}{2}$
Steve Wilson, 4/23
Lawrence, KS
1004 (2.4)
$\dfrac{6 + 2}{.8\%} + 4$
Steve Wilson, 4/23
Lawrence, KS
1005 (2.6)
$\dfrac{6 + 2 + 4\%}{.8\%}$
Steve Wilson, 4/23
Lawrence, KS
1006 (2.4)
$\dfrac{4 \times 2}{.8\%} + 6$
Steve Wilson, 4/23
Lawrence, KS
1007 (3.6)
$\dfrac{\sqrt{4} + (8 + 6)\pmf}{2\pmf}$
Steve Wilson, 4/23
Lawrence, KS
1008 (2.0)
$84 \times 6 \times 2$
Callie Biddle, 4/16
Olathe, KS
1009 (3.6)
$\dfrac{8!\% - 2}{.4} + 6$
Steve Wilson, 1/24
Lawrence, KS
1010 (3.2)
$\sqrt[.2]{4} - 6 - 8$
Steve Wilson, 1/24
Lawrence, KS
  1011 (3.6)
$\dfrac{\sqrt{4} + 6\pmf}{2\pmf} + 8$
Steve Wilson, 4/23
Lawrence, KS
1012 (2.4)
$2 \times \left( \dfrac{4}{.8\%} + 6 \right)$
Steve Wilson, 4/23
Lawrence, KS
1013 (3.8)
$\dfrac{8!\% + \sqrt{6 - 2}}{.4}$
Steve Wilson, 1/24
Lawrence, KS
1014 (3.4)
$\dfrac{\sqrt{4}}{2\pmf} + 8 + 6$
Steve Wilson, 4/23
Lawrence, KS
1015 (2.4)
$\dfrac{ \dfrac{8}{2\%} + 6}{.4}$
Steve Wilson, 4/23
Lawrence, KS
1016 (3.0)
$2^{6+4} - 8$
Steve Wilson, 4/23
Lawrence, KS
1017 (3.8)
$\dfrac{6^2\% + 8!\pmf}{4\%}$
Steve Wilson, 1/24
Lawrence, KS
1018 (3.0)
$(4 \times 8)^2 - 6$
Obada Albadawi, 1/16
Overland Park, KS
1019 (4.8)
$\sqrt[.2]{4} - 6 + \cos(8!^\circ)$
Steve Wilson, 2/24
Lawrence, KS
1020 (2.6)
$\dfrac{4.8 + 2}{.\overline{6}\%}$
Steve Wilson, 4/23
Lawrence, KS
  1021 (3.6)
$\dfrac{8!\% + 6}{.4} - 2$
Steve Wilson, 1/24
Lawrence, KS
1022 (3.2)
$\sqrt{8^6 \times 4} - 2$
Steve Wilson, 4/23
Lawrence, KS
1023 (3.8)
$\dfrac{8!\% + \sqrt{6^2}}{.4}$
Steve Wilson, 1/24
Lawrence, KS
1024 (2.0)
$64 \times 8 \times 2$
Steve Wilson, 4/23
Lawrence, KS
1025 (3.6)
$\dfrac{8!\% + 6}{.4} + 2$
Steve Wilson, 1/24
Lawrence, KS
1026 (3.2)
$\sqrt{8^6 \times 4} + 2$
Steve Wilson, 4/23
Lawrence, KS
1027 (4.8)
$\antilog\left(\dfrac62\right) + \dfrac{4!}{.\overline{8}}$
Steve Wilson, 2/24
Lawrence, KS
1028 (3.6)
$\dfrac{8!\% + 6 + 2}{.4}$
Steve Wilson, 1/24
Lawrence, KS
1029 (4.6)
$\sqrt{\antilog 6} + \dfrac{2}{8\%} + 4$
Steve Wilson, 2/24
Lawrence, KS
1030 (2.4)
$\dfrac{ \dfrac{8}{4\%} + 6}{.2}$
Steve Wilson, 4/23
Lawrence, KS
  1031 (4.8)
$\ln\sqrt{\exp\left(\dfrac{8}{4\pmf} + 62\right)}$
Steve Wilson, 2/24
Lawrence, KS
1032 (2.8)
$6 \times \left( \dfrac{.4}{.\overline{2}\%} - 8 \right)$
Steve Wilson, 4/23
Lawrence, KS
1033 (3.8)
$\sqrt[.2]{4} + \dfrac{6!\%}{.8}$
Steve Wilson, 1/24
Lawrence, KS
1034 (3.6)
$\dfrac{\sqrt{4} + 8\%}{2\pmf} - 6$
Steve Wilson, 4/23
Lawrence, KS
1035 (2.6)
$\dfrac{4.6 \times 2}{.\overline{8}\%}$
Steve Wilson, 4/23
Lawrence, KS
1036 (3.6)
$\sqrt[.2]{4} + \dfrac{8}{.\overline{6}}$
Steve Wilson, 1/24
Lawrence, KS
1037 (3.8)
$\dfrac{\sqrt{4} + 8\% - 6\pmf}{2\pmf}$
Steve Wilson, 7/24
Lawrence, KS
1038 (3.2)
$\sqrt[.2]{4} + 6 + 8$
Steve Wilson, 1/24
Lawrence, KS
1039 (4.8)
$\sqrt[.2]{4} + \sqrt{\left( \sqrt{\sqrt{(.\overline{6}\%)^{-8}}}\right)\%}$
Steve Wilson, 2/24
Lawrence, KS
1040 (2.4)
$(6 - .8) \times \dfrac{4}{2\%}$
Steve Wilson, 4/23
Lawrence, KS
  1041 (4.6)
$\sqrt{\antilog 6} + \dfrac{82}{\sqrt{4}}$
Steve Wilson, 2/24
Lawrence, KS
1042 (4.4)
$\sqrt{\antilog 6} + \dfrac{84}{2}$
Steve Wilson, 2/24
Lawrence, KS
1043 (4.6)
$\dfrac{6}{(\csch\ln 4)\%} - 82$
Steve Wilson, 2/24
Lawrence, KS
1044 (3.6)
$\dfrac{8!\%}{.4} + 6^2$
Steve Wilson, 1/24
Lawrence, KS
1045 (4.6)
$\dfrac{.\overline{6} + .\overline{2} + 4\%}{.\overline{8}\pmf}$
Steve Wilson, 2/24
Lawrence, KS
1046 (3.6)
$\dfrac{\sqrt{4} + 8\%}{2\pmf} + 6$
Steve Wilson, 4/23
Lawrence, KS
1047 (4.8)
$\dfrac{6!}{\sech\ln(.4)} + \log_2{8}$
Steve Wilson, 2/24
Lawrence, KS
1048 (2.8)
$4 \times \left( \dfrac{.6}{.\overline{2}\%} - 8 \right)$
Steve Wilson, 4/23
Lawrence, KS
1049 (4.0)
$\sqrt[.2]{4} + (8\pm)^{-.\overline{6}}$
Steve Wilson, 1/24
Lawrence, KS
1050 (2.2)
$\dfrac{84}{(6 + 2)\%}$
Steve Wilson, 4/23
Lawrence, KS
  1051 (4.8)
$\cosh(2 \times \arcosh(4!)) - \antilog(8 - 6)$
Steve Wilson, 7/24
Lawrence, KS
1052 (3.8)
$\dfrac{6!}{\sqrt{.\overline{4}}} - 28$
Steve Wilson, 1/24
Lawrence, KS
1053 (4.4)
$\dfrac{6!}{\sqrt{.\overline{4}}} - \dfrac{4!}{.\overline{8}}$
Steve Wilson, 2/24
Lawrence, KS
1054 (3.8)
$\sqrt[.2]{4} + \sqrt{\dfrac{6!}{.8}}$
Steve Wilson, 1/24
Lawrence, KS
1055 (4.2)
$\dfrac{6!}{\sqrt{.\overline{4}}} - \dfrac{\sqrt{4}}{8\%}$
Steve Wilson, 2/24
Lawrence, KS
1056 (3.2)
$4! \times (6^2 + 8)$
Steve Wilson, 4/23
Lawrence, KS
1057 (4.8)
$6! + \cosh(4 \times \arsinh\sqrt{8 - 2})$
Steve Wilson, 2/24
Lawrence, KS
1058 (4.8)
$\sqrt[.2]{4} + \ln\sqrt{\exp 68}$
Steve Wilson, 1/24
Lawrence, KS
1059 (4.8)
$\coth\ln\coth\arsinh\left(4 \times \left(6 - \dfrac28\right)\right)$
Steve Wilson, 7/24
Lawrence, KS
1060 (3.6)
$\sqrt[.2]{4} + \sqrt{\sqrt{6^8}}$
Steve Wilson, 1/24
Lawrence, KS
  1061 (4.0)
$\sqrt{(.\overline{8}\pm)^{-2}\phantom8} - 64$
Steve Wilson, 2/24
Lawrence, KS
1062 (4.4)
$\antilog\left(\dfrac{4!}{8}\right) + 62$
Steve Wilson, 2/24
Lawrence, KS
1063 (4.2)
$\sqrt{\sqrt{(.\overline{8}\pm)^{-4}\phantom8}} - 62$
Steve Wilson, 2/24
Lawrence, KS
1064 (2.8)
$8 \times \left( \dfrac{.6}{.\overline{4}\%} - 2 \right)$
Steve Wilson, 4/23
Lawrence, KS
1065 (3.8)
$\dfrac{6! - 8 - 2}{\sqrt{.\overline{4}}}$
Steve Wilson, 1/24
Lawrence, KS
1066 (3.8)
$\dfrac{6! - 8}{\sqrt{.\overline{4}}} - 2$
Steve Wilson, 1/24
Lawrence, KS
1067 (4.8)
$\sqrt[.2]{4} + \ln\sqrt{\exp 86}$
Steve Wilson, 1/24
Lawrence, KS
1068 (2.8)
$6 \times \left( \dfrac{.8}{.\overline{4}\%} - 2 \right)$
Steve Wilson, 4/23
Lawrence, KS
1069 (3.8)
$\dfrac{6! - 2}{\sqrt{.\overline{4}}} - 8$
Steve Wilson, 1/24
Lawrence, KS
1070 (3.6)
$\dfrac{\sqrt{4} + (8 + 6)\%}{2\pmf}$
Steve Wilson, 4/23
Lawrence, KS
  1071 (3.8)
$\dfrac{6! - 8 + 2}{\sqrt{.\overline{4}}}$
Steve Wilson, 1/24
Lawrence, KS
1072 (2.0)
$268 \times 4$
Callie Biddle, 1/16
Olathe, KS
1073 (3.6)
$\dfrac{8!\% + 26}{.4}$
Steve Wilson, 1/24
Lawrence, KS
1074 (3.8)
$\dfrac{6!}{\sqrt{.\overline{4}}} - 8 + 2$
Steve Wilson, 1/24
Lawrence, KS
1075 (2.2)
$\dfrac{86}{2 \times 4\%}$
Jonathan Frank, 4/21
Rye, NY
1076 (3.8)
$\dfrac{6!}{\sqrt{.\overline{4}}} - \dfrac82$
Steve Wilson, 1/24
Lawrence, KS
1077 (3.8)
$\dfrac{(8 - 2)! - \sqrt{4}}{.\overline{6}}$
Steve Wilson, 2/24
Lawrence, KS
1078 (2.8)
$\dfrac{8 \times .6}{.\overline{4}\%} - 2$
Steve Wilson, 4/23
Lawrence, KS
1079 (4.0)
$\sqrt{(.\overline{8}\pm)^{-2}\phantom8} - 46$
Steve Wilson, 2/24
Lawrence, KS
1080 (2.6)
$\dfrac{6.8 - 2}{.\overline{4}\%}$
Steve Wilson, 4/23
Lawrence, KS
  1081 (4.2)
$\dfrac{(8 - 2)! + .\overline{6}}{\sqrt{.\overline{4}}}$
Steve Wilson, 1/24
Lawrence, KS
1082 (2.8)
$\dfrac{8 \times .6}{.\overline{4}\%} + 2$
Steve Wilson, 4/23
Lawrence, KS
1083 (3.8)
$\dfrac{8!\% + \dfrac{6}{.2}}{.4}$
Steve Wilson, 1/24
Lawrence, KS
1084 (3.8)
$\dfrac{6!}{\sqrt{.\overline{4}}} + \dfrac82$
Steve Wilson, 1/24
Lawrence, KS
1085 (3.8)
$\dfrac{6! - 2}{\sqrt{.\overline{4}}} + 8$
Steve Wilson, 1/24
Lawrence, KS
1086 (3.4)
$\dfrac{\sqrt{4}}{2\pmf} + 86$
Steve Wilson, 4/23
Lawrence, KS
1087 (4.8)
$(\coth\ln\coth\arsinh 4)^2 - 8 + 6$
Steve Wilson, 7/24
Lawrence, KS
1088 (2.8)
$\dfrac{6 \times .4}{.\overline{2}\%} + 8$
Steve Wilson, 4/23
Lawrence, KS
1089 (3.8)
$\dfrac{6! + 8 - 2}{\sqrt{.\overline{4}}}$
Steve Wilson, 1/24
Lawrence, KS
1090 (3.8)
$\dfrac{6!}{\sqrt{.\overline{4}}} + 8 + 2$
Steve Wilson, 1/24
Lawrence, KS
  1091 (3.8)
$\dfrac{6! + 2}{\sqrt{.\overline{4}}} + 8$
Steve Wilson, 1/24
Lawrence, KS
1092 (2.8)
$6 \times \left( \dfrac{.8}{.\overline{4}\%} + 2 \right)$
Steve Wilson, 4/23
Lawrence, KS
1093 (4.6)
$\dfrac{(4! + .\overline{8} - .6)\%}{.\overline{2}\pmf}$
Steve Wilson, 7/24
Lawrence, KS
1094 (3.8)
$\dfrac{6! + 8}{\sqrt{.\overline{4}}} + 2$
Steve Wilson, 1/24
Lawrence, KS
1095 (3.8)
$\dfrac{6! + 8 + 2}{\sqrt{.\overline{4}}}$
Steve Wilson, 1/24
Lawrence, KS
1096 (2.8)
$8 \times \left( \dfrac{.6}{.\overline{4}\%} + 2 \right)$
Steve Wilson, 4/23
Lawrence, KS
1097 (4.4)
$\dfrac{8 - \sqrt{.\overline{4}} - 2\%}{.\overline{6}\%}$
Steve Wilson, 7/24
Lawrence, KS
1098 (3.6)
$\dfrac{8!\% + 6^2}{.4}$
Steve Wilson, 1/24
Lawrence, KS
1099 (3.4)
$\sqrt[.2]{4} + \dfrac{6}{8\%}$
Steve Wilson, 1/24
Lawrence, KS
1100 (2.6)
$\dfrac{6 - 2 \times .8}{.4\%}$
Steve Wilson, 4/23
Lawrence, KS
  1101 (3.6)
$\dfrac{6!}{8^2 \%} - 4!$
Steve Wilson, 4/23
Lawrence, KS
1102 (4.2)
$\dfrac{8 - \sqrt{.\overline{4}}}{.\overline{6}\%} + 2$
Steve Wilson, 2/24
Lawrence, KS
1103 (4.4)
$\dfrac{8 - \sqrt{.\overline{4}} + 2\%}{.\overline{6}\%}$
Steve Wilson, 7/24
Lawrence, KS
1104 (3.8)
$\dfrac{6! + 8 \times 2}{\sqrt{.\overline{4}}}$
Steve Wilson, 1/24
Lawrence, KS
1105 (4.2)
$\sqrt[.2]{4} + \dfrac{6!\pmf}{.\overline{8}\%}$
Steve Wilson, 2/24
Lawrence, KS
1106 (4.8)
$46 \times \left( \ln\sqrt{\exp 8} \right)! + 2$
Steve Wilson, 2/24
Lawrence, KS
1107 (2.4)
$\dfrac{82 \times 6}{.\overline{4}}$
Steve Wilson, 4/23
Lawrence, KS
1108 (3.8)
$\dfrac{6!}{\sqrt{.\overline{4}}} + 28$
Steve Wilson, 1/24
Lawrence, KS
1109 (4.6)
$\sqrt{(.\overline{8}\pm)^{-2}\phantom8} - 4! \times .\overline{6}$
Steve Wilson, 2/24
Lawrence, KS
1110 (3.2)
$\sqrt[.2]{4} + 86$
Steve Wilson, 1/24
Lawrence, KS
  1111 (4.0)
$\dfrac{8 - 4 \times 2\%\%}{6!\%\pmf}$
Steve Wilson, 7/24
Lawrence, KS
1112 (2.8)
$4 \times \left( \dfrac{.6}{.\overline{2}\%} + 8 \right)$
Steve Wilson, 4/23
Lawrence, KS
1113 (4.2)
$\sqrt{\sqrt{(.\overline{8}\pm)^{-4}\phantom8}} - 6 \times 2$
Steve Wilson, 2/24
Lawrence, KS
1114 (3.4)
$\dfrac{4!}{2\%} - 86$
Steve Wilson, 1/24
Lawrence, KS
1115 (4.0)
$\sqrt{(.\overline{8}\pm)^{-2}\phantom8} - 6 - 4$
Steve Wilson, 2/24
Lawrence, KS
1116 (2.4)
$\dfrac{62 \times 8}{.\overline{4}}$
Steve Wilson, 4/23
Lawrence, KS
1117 (4.2)
$\sqrt{\sqrt{(.\overline{8}\pm)^{-4}\phantom8}} - 6 - 2$
Steve Wilson, 2/24
Lawrence, KS
1118 (3.4)
$\dfrac{8!}{6^2} - \sqrt{4}$
Jonathan Frank, 11/22
Rye, NY
1119 (3.8)
$\dfrac{\sqrt{4}}{2 \times .\overline{8}\pmf} - 6$
Steve Wilson, 1/24
Lawrence, KS
1120 (3.2)
$\dfrac{8!}{6^{4-2}}$
Steve Wilson, 4/23
Lawrence, KS
  1121 (3.4)
$\dfrac{6!}{8^2 \%} - 4$
Jonathan Frank, 11/22
Rye, NY
1122 (3.4)
$\dfrac{8!}{6^2} + \sqrt{4}$
Jonathan Frank, 11/22
Rye, NY
1123 (2.6)
$\dfrac{6 + 4}{.\overline{8}\%} - 2$
Steve Wilson, 4/23
Lawrence, KS
1124 (3.2)
$\dfrac{8!}{6^2} + 4$
Jonathan Frank, 11/22
Rye, NY
1125 (2.6)
$\dfrac{8 - \dfrac24}{.\overline{6}\%}$
Steve Wilson, 4/23
Lawrence, KS
1126 (4.4)
$\sqrt{(.\overline{8}\pm)^{-2}\phantom8} + .6 + .4$
Steve Wilson, 2/24
Lawrence, KS
1127 (2.6)
$\dfrac{6 + 4}{.\overline{8}\%} + 2$
Steve Wilson, 4/23
Lawrence, KS
1128 (2.8)
$6 \times \left(\dfrac{.4}{.\overline{2}\%} + 8 \right)$
Steve Wilson, 4/23
Lawrence, KS
1129 (3.4)
$\dfrac{6!}{8^2 \%} + 4$
Jonathan Frank, 11/22
Rye, NY
1130 (4.6)
$\sqrt{(.\overline{8}\pm)^{-2}\phantom8} + \sqrt{\dfrac{6}{4!\%}}$
Steve Wilson, 2/24
Lawrence, KS
  1131 (3.8)
$\dfrac{\sqrt{4}}{2 \times .\overline{8}\pmf} + 6$
Steve Wilson, 1/24
Lawrence, KS
1132 (3.4)
$\dfrac{4!}{2\%} - 68$
Steve Wilson, 1/24
Lawrence, KS
1133 (4.2)
$\sqrt{\sqrt{(.\overline{8}\pm)^{-4}\phantom8}} + 6 + 2$
Steve Wilson, 2/24
Lawrence, KS
1134 (4.6)
$\sqrt{(.\overline{8}\pm)^{-2}\phantom8} + \dfrac{6}{\sqrt{.\overline{4}}}$
Steve Wilson, 2/24
Lawrence, KS
1135 (4.0)
$\sqrt{(.\overline{8}\pm)^{-2}\phantom8} + 6 + 4$
Steve Wilson, 2/24
Lawrence, KS
1136 (3.8)
$\dfrac{8}{\left(\sqrt{.\overline{4}}\right)\%} - 2^6$
Steve Wilson, 2/24
Lawrence, KS
1137 (2.8)
$\dfrac{8 - .42}{.\overline{6}\%}$
Steve Wilson, 4/23
Lawrence, KS
1138 (2.8)
$\dfrac{8 - .4}{.\overline{6}\%} - 2$
Steve Wilson, 4/23
Lawrence, KS
1139 (4.6)
$\cosh(2 \times \arsinh(4!)) - 8 - 6$
Steve Wilson, 7/24
Lawrence, KS
1140 (3.2)
$\dfrac{6}{.4\%} - \dfrac{.8}{.\overline{2}\%}$
Steve Wilson, 2/24
Lawrence, KS
  1141 (4.6)
$\sqrt{(.\overline{8}\pm)^{-2}\phantom8} + 4! \times .\overline{6}$
Steve Wilson, 2/24
Lawrence, KS
1142 (2.8)
$\dfrac{8 - .4}{.\overline{6}\%} + 2$
Steve Wilson, 4/23
Lawrence, KS
1143 (3.0)
$\dfrac{8 - .4 + 2\%}{.\overline{6}\%}$
Steve Wilson, 4/23
Lawrence, KS
1144 (2.0)
$286 \times 4$
Spencer Lundquist, 1/16
Lenexa, KS
1145 (4.6)
$\sqrt{(.\overline{8}\pm)^{-2}\phantom8} + \sqrt{\dfrac{4!}{6\%}}$
Steve Wilson, 2/24
Lawrence, KS
1146 (4.0)
$\dfrac{8 - .2}{.\overline{6}\%} - 4!$
Steve Wilson, 4/23
Lawrence, KS
1147 (4.8)
$\cosh(4 \times \arsech\sqrt{8\%}) - 6 + 2$
Steve Wilson, 7/24
Lawrence, KS
1148 (4.0)
$\dfrac{4!\%}{.\overline{2}\pmf} + 68$
Steve Wilson, 2/24
Lawrence, KS
1149 (3.6)
$\dfrac{6!}{8^2 \%} + 4!$
Steve Wilson, 4/23
Lawrence, KS
1150 (2.2)
$46 \times \dfrac{2}{8\%}$
Jonathan Frank, 12/21
Rye, NY
  1151 (4.2)
$\sqrt{\sqrt{(.\overline{8}\pm)^{-4}\phantom8}} + 26$
Steve Wilson, 2/24
Lawrence, KS
1152 (2.0)
$24 \times 8 \times 6$
Steve Wilson, 4/23
Lawrence, KS
1153 (4.6)
$\dfrac{6}{(\csch\ln 4)\%} + 28$
Steve Wilson, 2/24
Lawrence, KS
1154 (3.6)
$\dfrac{4! - .8}{2\%} - 6$
Steve Wilson, 1/24
Lawrence, KS
1155 (4.2)
$\dfrac{4!\%}{.\overline{2}\pmf} + \dfrac{6}{8\%}$
Steve Wilson, 2/24
Lawrence, KS
1156 (3.0)
$\dfrac{68^2}{4}$
Jessica Hodge, 1/16
Overland Park, KS
1157 (3.6)
$\dfrac{4! - .86}{2\%}$
Steve Wilson, 1/24
Lawrence, KS
1158 (2.6)
$\dfrac{8}{.\overline{6}\%} - 42$
Steve Wilson, 4/23
Lawrence, KS
1159 (4.8)
$\cosh(4 \times \arsech\sqrt{8\%}) + 6 + 2$
Steve Wilson, 7/24
Lawrence, KS
1160 (2.4)
$\dfrac{6 \times 4 - .8}{2\%}$
Steve Wilson, 4/23
Lawrence, KS
  1161 (4.0)
$\dfrac{8 - (4! + 2)\%}{.\overline{6}\%}$
Steve Wilson, 4/23
Lawrence, KS
1162 (3.6)
$\dfrac{4! - .6}{2\%} - 8$
Steve Wilson, 1/24
Lawrence, KS
1163 (3.6)
$\dfrac{8!\% + 62}{.4}$
Steve Wilson, 1/24
Lawrence, KS
1164 (2.8)
$\dfrac{8 - .24}{.\overline{6}\%}$
Steve Wilson, 4/23
Lawrence, KS
1165 (4.4)
$\sqrt{(.\overline{8}\pm)^{-2}\phantom8} + \dfrac{4!}{.6}$
Steve Wilson, 2/24
Lawrence, KS
1166 (2.8)
$\dfrac{8 - .2}{.\overline{6}\%} - 4$
Steve Wilson, 4/23
Lawrence, KS
1167 (4.0)
$\dfrac{8 - (4! - 2)\%}{.\overline{6}\%}$
Steve Wilson, 4/23
Lawrence, KS
1168 (2.2)
$4 \times \left( \dfrac{6}{2\%} - 8 \right)$
Steve Wilson, 4/23
Lawrence, KS
1169 (4.8)
$\coth\ln\coth\arsinh(6 \times 4) + 8 \times 2$
Steve Wilson, 7/24
Lawrence, KS
1170 (2.4)
$(8 - .2) \times \dfrac{6}{4\%}$
Steve Wilson, 4/23
Lawrence, KS
  1171 (3.6)
$6^4 - \sqrt{(8\pm)^{-2}\phantom.}$
Steve Wilson, 2/24
Lawrence, KS
1172 (2.8)
$\dfrac{6 - .8}{.\overline{4}\%} + 2$
Steve Wilson, 4/23
Lawrence, KS
1173 (3.2)
$\dfrac{8 - \dfrac{4\%}{.\overline{2}}}{.\overline{6}\%}$
Steve Wilson, 7/24
Lawrence, KS
1174 (2.8)
$\dfrac{8 - .2}{.\overline{6}\%} + 4$
Steve Wilson, 4/23
Lawrence, KS
1175 (4.8)
$\sqrt{(.\overline{8}\pm)^{-2}\phantom8} + \sqrt{\dfrac{6}{4!\%\%}}$
Steve Wilson, 2/24
Lawrence, KS
1176 (2.4)
$(4 - 8\%) \times \dfrac{6}{2\%}$
Steve Wilson, 4/23
Lawrence, KS
1177 (4.8)
$\cosh(4 \times \arsech\sqrt{8\%}) + 26$
Steve Wilson, 7/24
Lawrence, KS
1178 (3.6)
$\dfrac{4! - .6}{2\%} + 8$
Steve Wilson, 1/24
Lawrence, KS
1179 (4.0)
$\dfrac{8 + 2\%}{.\overline{6}\%} - 4!$
Steve Wilson, 4/23
Lawrence, KS
1180 (2.8)
$\dfrac{8}{.\overline{6}\%} - \dfrac{4}{.2}$
Steve Wilson, 4/23
Lawrence, KS
  1181 (4.6)
$\cosh(2 \times \arsech(4\%)) - 68$
Steve Wilson, 7/24
Lawrence, KS
1182 (3.0)
$\dfrac{8}{.\overline{6}\%} - \dfrac{4}{.\overline{2}}$
Steve Wilson, 4/23
Lawrence, KS
1183 (4.6)
$\cosh(2 \times \arcsch(4\%)) - 68$
Steve Wilson, 7/24
Lawrence, KS
1184 (2.2)
$8 \times \left( \dfrac{6}{4\%} - 2 \right)$
Steve Wilson, 4/23
Lawrence, KS
1185 (4.0)
$\dfrac{8 - \dfrac{\sqrt{4\%}}{2}}{.\overline{6}\%}$
Steve Wilson, 4/23
Lawrence, KS
1186 (3.4)
$\dfrac{4!}{2\%} - 8 - 6$
Steve Wilson, 1/24
Lawrence, KS
1187 (4.2)
$\sqrt{\sqrt{(.\overline{8}\pm)^{-4}\phantom8}} + 62$
Steve Wilson, 2/24
Lawrence, KS
1188 (2.2)
$6 \times \left( \dfrac{8}{4\%} - 2 \right)$
Steve Wilson, 4/23
Lawrence, KS
1189 (3.6)
$\dfrac{4! - 6\%}{2\%} - 8$
Steve Wilson, 1/24
Lawrence, KS
1190 (3.6)
$\dfrac{4! - 8\%}{2\%} - 6$
Steve Wilson, 1/24
Lawrence, KS
  1191 (2.8)
$\dfrac{8 - (4 + 2)\%}{.\overline{6}\%}$
Steve Wilson, 4/23
Lawrence, KS
1192 (2.2)
$\dfrac{6 \times 4}{2\%} - 8$
Steve Wilson, 4/23
Lawrence, KS
1193 (2.8)
$\dfrac{8 - 2\%}{.\overline{6}\%} - 4$
Steve Wilson, 4/23
Lawrence, KS
1194 (2.6)
$\dfrac{8}{.\overline{6}\%} - 4 - 2$
Steve Wilson, 4/23
Lawrence, KS
1195 (2.2)
$\dfrac{6 \times 8 - .2}{4\%}$
Steve Wilson, 4/23
Lawrence, KS
1196 (2.4)
$\dfrac{6 \times 4 - 8\%}{2\%}$
Steve Wilson, 4/23
Lawrence, KS
1197 (2.4)
$(8 - 2\%) \times \dfrac{6}{4\%}$
Steve Wilson, 4/23
Lawrence, KS
1198 (2.2)
$\dfrac{8 \times 6}{4\%} - 2$
Yi Zheng, 2/16
Olathe, KS
1199 (2.8)
$\dfrac{8 + 2\%}{.\overline{6}\%} - 4$
Steve Wilson, 4/23
Lawrence, KS
1200 (2.2)
$\dfrac{48}{(6 - 2)\%}$
Steve Wilson, 4/23
Lawrence, KS

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201-1600), Page 5 (1601-2000), Page 6 (2001-2400), Page 7 (2401-2800), Page 8 (2801-16000), Page 41 (16001+).