\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \)
This problem was proposed by Integermaniac master Paolo Pellegrini. Create each of the positive integers using four copies of 1, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.
Use the online submissions page to get your Integermania solutions posted here! Five "new" or "improved" solutions per person per month are accepted.
Page 1 (1-400), Page 2 (401+).
1 (1.0) $1 + 1 - 1 \times 1$ Paolo Pellegrini, 3/09 Martina Franca, Italy |
2 (1.0) $1 + 1 + 1 - 1$ Paolo Pellegrini, 3/09 Martina Franca, Italy |
3 (1.0) $1 + 1 + 1 \times 1$ Paolo Pellegrini, 3/09 Martina Franca, Italy |
4 (1.0) $1 + 1 + 1 + 1$ Paolo Pellegrini, 3/09 Martina Franca, Italy |
5 (2.2) $\dfrac{1}{(1+1)\times .1}$ Ralph Jeffords, 5/09 Centreville, VA |
6 (2.4) $\dfrac{1}{.1+.1}+1$ Steve Wilson, 4/09 Raytown, MO |
7 (2.4) $\dfrac{1}{.\overline{1}} - 1 - 1$ Ralph Jeffords, 3/09 Centreville, VA |
8 (2.2) $\dfrac{1}{.1} - 1 - 1$ Ralph Jeffords, 4/09 Centreville, VA |
9 (2.0) $11 - 1 - 1$ Steve Wilson, 3/09 Raytown, MO |
10 (2.0) $11 - 1 \times 1$ Steve Wilson, 3/09 Raytown, MO |
|
11 (2.0) $11 - 1 + 1$ Steve Wilson, 3/09 Raytown, MO |
12 (2.0) $11 + 1 \times 1$ Steve Wilson, 3/09 Raytown, MO |
13 (2.0) $11 + 1 + 1$ Steve Wilson, 3/09 Raytown, MO |
14 (3.6) $11 + \dfrac{1}{\sqrt{.\overline{1}}}$ Ralph Jeffords, 4/09 Centreville, VA |
15 (3.8) $\dfrac{1}{(1+1) \times \sqrt{.\overline{1}\%}}$ Paolo Pellegrini, 4/09 Martina Franca, Italy |
16 (4.0) $\dfrac{1}{.1-\sqrt{.\overline{1}\%}} + 1$ Paolo Pellegrini, 4/09 Martina Franca, Italy |
17 (2.4) $\dfrac{1+1}{.\overline{1}} -1$ Ralph Jeffords, 3/09 Centreville, VA |
18 (2.4) $\dfrac{1\times 1+1}{.\overline{1}}$ Ralph Jeffords, 3/09 Centreville, VA |
19 (2.2) $\dfrac{1+1}{.1}-1$ Steve Wilson, 4/09 Raytown, MO |
20 (2.2) $\dfrac{1+1}{.1} \times 1$ Steve Wilson, 4/09 Raytown, MO |
|
21 (2.2) $\dfrac{1+1}{.1} + 1$ Steve Wilson, 4/09 Raytown, MO |
22 (2.0) $11 + 11$ Steve Wilson, 4/09 Raytown, MO |
23 (3.8) $\left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! - 1$ Paolo Pellegrini, 4/09 Martina Franca, Italy |
24 (3.2) $(1 + 1 + 1 + 1)!$ Carolyn Neptune, 3/09 Prairie Village, KS |
25 (3.4) $\dfrac{.\overline{1} + .\overline{1}}{(1- .\overline{1})\%}$ Paolo Pellegrini, 4/09 Martina Franca, Italy |
26 (4.0) $\dfrac{1}{.\overline{1} \times \sqrt{.\overline{1}}} - 1$ Paolo Pellegrini, 4/09 Martina Franca, Italy |
27 (2.4) $\dfrac{1+1+1}{.\overline{1}}$ Carolyn Neptune, 3/09 Prairie Village, KS |
28 (3.8) $\dfrac{1}{\sqrt{.\overline{1}\%}} - 1 - 1$ Ralph Jeffords, 6/09 Centreville, VA |
29 (3.6) $\sqrt{ \dfrac{1-.1}{1 \pmf}} - 1$ Paolo Pellegrini, 12/09 Martina Franca, Italy |
30 (2.2) $\dfrac{1+1+1}{.1}$ Dave Jones, 4/09 Coventry, England |
|
31 (3.4) $\sqrt{ \sqrt[.1]{1+1}} - 1$ Paolo Pellegrini, 12/09 Martina Franca, Italy |
32 (3.4) $\sqrt[.1+.1]{1+1}$ Ralph Jeffords, 4/09 Centreville, VA |
33 (3.4) $\sqrt{ \sqrt[.1]{1+1}} + 1$ Paolo Pellegrini, 12/09 Martina Franca, Italy |
34 (3.6) $\dfrac{11}{\sqrt{.\overline{1}}} + 1$ Paolo Pellegrini, 5/09 Martina Franca, Italy |
35 (4.6) $\dfrac{ \sqrt{.\overline{1}} - .1}{\left( 1-\sqrt{.\overline{1}}\right) \%}$ Ralph Jeffords, 6/09 Centreville, VA |
36 (3.6) $\dfrac{11+1}{\sqrt{.\overline{1}}}$ Paolo Pellegrini, 5/09 Martina Franca, Italy |
37 (3.6) $111 \times \sqrt{.\overline{1}}$ Paolo Pellegrini, 5/09 Martina Franca, Italy |
38 (4.4) $\sqrt[-\sqrt{.\overline{1}}]{ \sqrt{.\overline{1}}} + 11$ Ralph Jeffords, 8/09 Centreville, VA |
39 (4.2) $\dfrac{1}{\sqrt{.\overline{1}\%}} + \dfrac{1}{.\overline{1}}$ Ralph Jeffords, 6/09 Centreville, VA |
40 (3.8) $\dfrac{ \dfrac{1}{\sqrt{.\overline{1}}} +1}{.1}$ Paolo Pellegrini, 5/09 Martina Franca, Italy |
|
41 (3.8) $\dfrac{1}{\sqrt{.\overline{1}\%}} + 11$ Paolo Pellegrini, 5/09 Martina Franca, Italy |
42 (4.6) $(1 + 1) \times \coth \ln \sqrt{1.1}$ Steve Wilson, 9/09 Raytown, MO |
43 (4.8) $-\log(1\%\%) \times 11 - 1$ Ralph Jeffords, 10/09 Centreville, VA |
44 (3.2) $\dfrac{.1}{(.\overline{1} + .\overline{1})\%} - 1$ Ralph Jeffords, 8/09 Centreville, VA |
45 (2.4) $\dfrac{1-.1}{(1+1)\%}$ Dave Jones, 4/09 Coventry, England |
46 (3.2) $\dfrac{.1}{(.\overline{1} + .\overline{1})\%} + 1$ Ralph Jeffords, 8/09 Centreville, VA |
47 (4.6) $\dfrac{1}{(1+1)\%} + \log(1 \pm)$ Ralph Jeffords, 10/09 Centreville, VA |
48 (4.6) $\dfrac{1}{(1+1)\%} + \log(1\%)$ Steve Wilson, 9/09 Raytown, MO |
49 (2.2) $\dfrac{1}{(1+1)\%} - 1$ Dave Jones, 4/09 Coventry, England |
50 (2.2) $\dfrac{1}{(1+1)\%} \times 1$ Dave Jones, 4/09 Coventry, England |
|
51 (2.2) $\dfrac{1}{(1+1)\%} + 1$ Dave Jones, 4/09 Coventry, England |
52 (4.6) $\dfrac{1}{(1+1)\%} - \log(1\%)$ Steve Wilson, 9/09 Raytown, MO |
53 (4.6) $\dfrac{1}{(1+1)\%} - \log(1 \pm)$ Ralph Jeffords, 10/09 Centreville, VA |
54 (3.6) $\dfrac{(1+1+1)!}{.\overline{1}}$ Carolyn Neptune, 3/09 Prairie Village, KS |
55 (2.2) $\dfrac{1.1}{(1+1)\%}$ Steve Wilson, 5/09 Raytown, MO |
56 (4.6) $1 - \dfrac{1.1}{(\log(1\%))\%}$ Steve Wilson, 10/09 Raytown, MO |
57 (4.0) $\dfrac{1+1-.1}{\sqrt{.\overline{1}\%}}$ Paolo Pellegrini, 6/09 Martina Franca, Italy |
58 (4.8) $\sqrt{1 + \cosh \left( \dfrac{\operatorname{arccsch}(1 \times 1)}{.1} \right) }$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
59 (3.8) $\dfrac{1+1}{\sqrt{.\overline{1}\%}} - 1$ Paolo Pellegrini, 6/09 Martina Franca, Italy |
60 (3.4) $\dfrac{(1+1+1)!}{.1}$ Paolo Pellegrini, 6/09 Martina Franca, Italy |
|
61 (3.8) $\dfrac{1+1}{\sqrt{.\overline{1}\%}} + 1$ Paolo Pellegrini, 6/09 Martina Franca, Italy |
62 (4.4) $\dfrac{ \left(\left( \dfrac{1}{\sqrt{.\overline{1}}}\right)! \right)!\% -1}{.1}$ Ralph Jeffords, 11/09 Centreville, VA |
63 (3.8) $\dfrac{1.1+1}{\sqrt{.\overline{1}\%}}$ Paolo Pellegrini, 6/09 Martina Franca, Italy |
64 (3.8) $(1+1)^{\left( 1/ \sqrt{.\overline{1}} \right)!}$ Steve Wilson, 9/09 Raytown, MO |
65 (4.6) $\dfrac{.1+\sqrt{.\overline{1}}}{\left( 1-\sqrt{.\overline{1}}\right)\%}$ Paolo Pellegrini, 10/09 Martina Franca, Italy |
66 (3.8) $\left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \times 11$ Paolo Pellegrini, 7/09 Martina Franca, Italy |
67 (4.4) $\dfrac{1-\sqrt{.\overline{1}}}{1\%} + \sqrt{.\overline{1}}$ Paolo Pellegrini, 10/09 Martina Franca, Italy |
68 (4.8) $\dfrac{1}{1\%} - \sqrt[.1]{\sec \arctan 1}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
69 (4.4) $\dfrac{ \left(1.1 - \sqrt{.\overline{1}} \right)\%}{.\overline{1} \pmf}$ Paolo Pellegrini, 10/09 Martina Franca, Italy |
70 (3.8) $\dfrac{1 - \sqrt{.1 - 1\%}}{1\%}$ Paolo Pellegrini, 7/09 Martina Franca, Italy |
|
71 (4.2) $\sqrt{1+ \left(1+ \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \right)!}$ Paolo Pellegrini, 10/09 Martina Franca, Italy |
72 (2.8) $\dfrac{ \dfrac{1}{.\overline{1}} -1}{.\overline{1}}$ Steve Wilson, 5/09 Raytown, MO |
73 (4.2) $\left( \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \right)! \times .1 + 1$ Ralph Jeffords, 11/09 Centreville, VA |
74 (3.8) $\dfrac{1}{ \left(1+ \sqrt{.\overline{1}} \right) \%} - 1$ Paolo Pellegrini, 7/09 Martina Franca, Italy |
75 (3.8) $\dfrac{1}{ \left(1+ \sqrt{.\overline{1}} \right) \%} \times 1$ Paolo Pellegrini, 7/09 Martina Franca, Italy |
76 (3.8) $\dfrac{1}{ \left(1+ \sqrt{.\overline{1}} \right) \%} + 1$ Ralph Jeffords, 7/09 Centreville, VA |
77 (4.6) $11 \times (1 - \log(1 \pmm))$ Paolo Pellegrini, 4/10 Martina Franca, Italy |
78 (4.4) $\dfrac{ \dfrac{1}{.\overline{1}} - \sqrt{.\overline{1}}}{.\overline{1}}$ Paolo Pellegrini, 11/09 Martina Franca, Italy |
79 (2.8) $\dfrac{.1}{.\overline{1}\%} - 11$ Steve Wilson, 5/09 Raytown, MO |
80 (2.6) $\dfrac{1-.1-.1}{1\%}$ Ralph Jeffords, 11/09 Centreville, VA |
|
81 (2.6) $\dfrac{ \dfrac{1}{.1} -1}{.\overline{1}}$ Steve Wilson, 1/10 Raytown, MO |
82 (2.8) $\dfrac{1}{.\overline{1} \times .\overline{1}} + 1$ Ralph Jeffords, 9/09 Centreville, VA |
83 (4.8) $(.\overline{1})^ {\log(1\%)} + 1 + 1$ Steve Wilson, 10/09 Raytown, MO |
84 (4.6) $\dfrac{.1}{.\overline{1}\%} - \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)!$ Kevin Schwarz, 8/09 Olathe, Kansas |
85 (4.8) $\dfrac{\sinh (\ln (1+1)) + .1}{1\%}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
86 (4.6) $\dfrac{ \left(1- \sqrt{.\overline{1}\%} \right)\%}{.\overline{1} \pm} - 1$ Paolo Pellegrini, 1/10 Martina Franca, Italy |
87 (4.4) $\dfrac{.1}{.\overline{1}\%} - \dfrac{1}{\sqrt{.\overline{1}}}$ Kevin Schwarz, 7/09 Olathe, Kansas |
88 (2.8) $\dfrac{.1}{.\overline{1}\%} - 1 - 1$ Steve Wilson, 5/09 Raytown, MO |
89 (2.2) $\dfrac{1}{1\%} - 11$ Kevin Schwarz, 7/09 Olathe, Kansas |
90 (2.4) $\dfrac{1}{1\%} - \dfrac{1}{.1}$ Ralph Jeffords, 9/09 Centreville, VA |
|
91 (2.4) $\dfrac{1-.1}{1\%} + 1$ Steve Wilson, 1/10 Raytown, MO |
92 (2.8) $\dfrac{.1}{.\overline{1}\%} + 1 + 1$ Steve Wilson, 5/09 Raytown, MO |
93 (4.4) $\dfrac{.1}{.\overline{1}\%} + \dfrac{1}{\sqrt{.\overline{1}}}$ Kevin Schwarz, 7/09 Olathe, Kansas |
94 (4.0) $\dfrac{1}{1\%} - \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)!$ Ralph Jeffords, 7/09 Centreville, VA |
95 (3.6) $\dfrac{.1 + .\overline{1}}{(.\overline{1} +.\overline{1})\%}$ Paolo Pellegrini, 12/09 Martina Franca, Italy |
96 (3.8) $\sqrt{ \dfrac{ \sqrt[.1]{1+1}}{.\overline{1}}}$ Paolo Pellegrini, 12/09 Martina Franca, Italy |
97 (3.8) $\dfrac{1}{1\%} - \dfrac{1}{\sqrt{.\overline{1}}}$ Kevin Schwarz, 7/09 Olathe, Kansas |
98 (2.2) $\dfrac{1}{1\%} - 1 - 1$ Kevin Schwarz, 6/09 Olathe, Kansas |
99 (2.2) $\dfrac{1}{1\%} - 1 \times 1$ Kevin Schwarz, 6/09 Olathe, Kansas |
100 (2.2) $\dfrac{1}{1\%} \times 1 \times 1$ Kevin Schwarz, 6/09 Olathe, Kansas |
|
101 (2.2) $\dfrac{1}{1\%} + 1 \times 1$ Kevin Schwarz, 6/09 Olathe, Kansas |
102 (2.2) $\dfrac{1}{1\%} + 1 + 1$ Kevin Schwarz, 6/09 Olathe, Kansas |
103 (3.8) $\dfrac{1}{1\%} + \dfrac{1}{\sqrt{.\overline{1}}}$ Kevin Schwarz, 7/09 Olathe, Kansas |
104 (4.6) $\dfrac{1}{1\%} - \log(1 \pm) + 1$ Steve Wilson, 10/09 Raytown, MO |
105 (4.8) $\dfrac{1}{1\%} - \log(1\%\%) + 1$ Steve Wilson, 10/09 Raytown, MO |
106 (4.0) $\dfrac{1}{1\%} + \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)!$ Kevin Schwarz, 8/09 Olathe, Kansas |
107 (4.6) $111 + \log(1\%\%)$ Ralph Jeffords, 12/09 Centreville, VA |
108 (2.4) $\dfrac{11+1}{.\overline{1}}$ Ralph Jeffords, 7/09 Centreville, VA |
109 (2.2) $\dfrac{11}{.1} - 1$ Ralph Jeffords, 7/09 Centreville, VA |
110 (2.0) $111 - 1$ Kevin Schwarz, 4/09 Olathe, Kansas |
|
111 (2.0) $111 \times 1$ Brooke Atkinson, 4/09 Olathe, KS |
112 (2.0) $111 + 1$ Kevin Schwarz, 4/09 Olathe, Kansas |
113 (4.4) $111 - \log(1\%)$ Steve Wilson, 11/09 Raytown, MO |
114 (4.4) $111 - \log(1 \pm)$ Paolo Pellegrini, 2/10 Martina Franca, Italy |
115 (4.6) $111 - \log(1\%\%)$ Paolo Pellegrini, 2/10 Martina Franca, Italy |
116 (4.6) $111 - \log(1 \% \pm)$ Paolo Pellegrini, 2/10 Martina Franca, Italy |
117 (4.4) $\dfrac{ \left(1+ \sqrt{.1-1\%} \right)\%}{.\overline{1} \pmf}$ Paolo Pellegrini, 11/09 Martina Franca, Italy |
118 (3.2) $\dfrac{.\overline{1} +(1+1)\%}{.\overline{1}\%}$ Paolo Pellegrini, 8/09 Martina Franca, Italy |
119 (3.6) $\left( \dfrac{1}{.1+.1} \right)! - 1$ Steve Wilson, 8/09 Raytown, MO |
120 (2.2) $\dfrac{11+1}{.1}$ Ralph Jeffords, 7/09 Centreville, VA |
|
121 (2.0) $11 \times 11$ Brooke Atkinson, 6/09 Olathe, KS |
122 (4.4) $(\coth \operatorname{arccsch} 11)^{1+1}$ Paolo Pellegrini, 8/10 Martina Franca, Italy |
123 (4.8) $(\sin \operatorname{arccot} 11)^{\log(1\%)} + 1$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
124 (4.2) $\left( \sqrt[-\sqrt{.\overline{1}}]{(1+1)\%} \right) \pm -1$ Paolo Pellegrini, 11/09 Martina Franca, Italy |
125 (2.6) $\dfrac{1}{(1-.1-.1)\%}$ Paolo Pellegrini, 7/09 Martina Franca, Italy |
126 (4.2) $\left( \sqrt[-\sqrt{.\overline{1}}]{(1+1)\%} \right) \pm +1$ Paolo Pellegrini, 11/09 Martina Franca, Italy |
127 (4.6) $\dfrac{1}{1\%} + \sqrt[-\sqrt{.\overline{1}}]{\sqrt{.\overline{1}}}$ Paolo Pellegrini, 11/09 Martina Franca, Italy |
128 (5.2) $-(\log(1\%))^{(1-\log(1\%))!+1}$ Steve Wilson, 3/10 Raytown, MO |
129 (4.4) $\dfrac{\left( 1.1+\sqrt{.\overline{1}} \right)\%}{.\overline{1} \pmf}$ Paolo Pellegrini, 1/10 Martina Franca, Italy |
130 (3.8) $\dfrac{1+ \sqrt{.1-1\%}}{1\%}$ Ralph Jeffords, 10/09 Centreville, VA |
|
131 (4.6) $\dfrac{ \sqrt{.\overline{1}} +.1}{\sqrt{.\overline{1}} \%} + 1$ Ralph Jeffords, 5/10 Centreville, VA |
132 (4.8) $\dfrac{1 - 1\%}{(\sinh \ln (1+1))\%}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
133 (4.4) $\dfrac{1+\sqrt{.\overline{1}}}{1\%} - \sqrt{.\overline{1}}$ Paolo Pellegrini, 1/10 Martina Franca, Italy |
134 (5.2) $\dfrac{11}{.1} + (-\log(1\%\%))!$ Ralph Jeffords, 5/10 Centreville, VA |
135 (4.0) $\dfrac{1-.1}{\left(1- \sqrt{.\overline{1}} \right)\%}$ Paolo Pellegrini, 1/10 Martina Franca, Italy |
136 (5.8) $\dfrac{ \log(1\% \pm)}{-.\overline{1} \times \sqrt{.\overline{1}}} + 1$ Ralph Jeffords, 5/10 Centreville, VA |
137 (5.4) $\dfrac{\log(1\%\%) - .11}{(\log(1\pm))\%}$ Steve Wilson, 7/23 Lawrence, KS |
138 (5.8) $((-\log(1\%\%))! - 1) \times \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)!$ Ralph Jeffords, 5/10 Centreville, VA |
139 (4.8) $\dfrac{1}{ \left( \sqrt{ \dfrac{1}{.\overline{1}} !}\right)!\% \pm} + .\overline{1}$ Paolo Pellegrini, 4/10 Martina Franca, Italy |
140 (4.6) $\dfrac{11 - \log(1 \pm)}{.1}$ Paolo Pellegrini, 2/10 Martina Franca, Italy |
|
143 (4.4) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - \dfrac{1}{1\%}$ Paolo Pellegrini, 1/10 Martina Franca, Italy |
144 (4.4) $(.1 + .1) \times \left(\left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \right)!$ Paolo Pellegrini, 2/10 Martina Franca, Italy |
145 (4.6) $\dfrac{1 - \sqrt{.\overline{1}\%}}{\left( 1- \sqrt{.\overline{1}} \right)\%}$ Paolo Pellegrini, 3/10 Martina Franca, Italy |
147 (4.8) $\log \left( \sqrt[(1+1)\%]{\dfrac{1}{1 \pmf}} \pm \right)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
148 (4.8) $\log \left( \sqrt[(1+1)\%]{\dfrac{1}{1 \pmf}} \% \right)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
149 (3.8) $\dfrac{1}{ \left( 1- \sqrt{.\overline{1}} \right) \%} - 1$ Ralph Jeffords, 4/10 Centreville, VA |
150 (3.8) $\dfrac{1}{ \left( 1- \sqrt{.\overline{1}} \right) \%} \times 1$ Ralph Jeffords, 4/10 Centreville, VA |
||||
151 (3.8) $\dfrac{1}{\left( 1- \sqrt{.\overline{1}} \right) \%} + 1$ Ralph Jeffords, 4/10 Centreville, VA |
152 (4.6) $(.1 + .\overline{1}) \times \left(\left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \right)!$ Paolo Pellegrini, 3/10 Martina Franca, Italy |
153 (4.8) $\log \left( \dfrac{1}{ \sqrt[(1+1)\%]{1 \pmf} \pmf} \right)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
154 (4.8) $1 - \log \left( \sqrt[(1+1)\%]{1 \pmf} \pm \right)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
155 (4.6) $\dfrac{1+\sqrt{.\overline{1}\%}}{ \left(1- \sqrt{.\overline{1}} \right)\%}$ Paolo Pellegrini, 4/10 Martina Franca, Italy |
160 (4.4) $\dfrac{.1 + \sqrt{\dfrac{1}{.\overline{1}}} !\%}{1 \pmf}$ Paolo Pellegrini, 4/10 Martina Franca, Italy |
|||||
161 (4.8) $\coth \ln \coth ((1+1) \times \operatorname{arcsinh}(1+1))$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
162 (2.8) $\dfrac{1+1}{.\overline{1} \times .\overline{1}}$ Paolo Pellegrini, 9/09 Martina Franca, Italy |
163 (4.8) $\cosh ((1+1) \times \operatorname{arccsch} .1\overline{1})$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
164 (4.8) $1 + \cosh ((1+1) \times \operatorname{arccsch} .\overline{1})$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
165 (4.0) $\dfrac{11\%}{\left(1- \sqrt{.\overline{1}} \right) \pmf}$ Paolo Pellegrini, 9/09 Martina Franca, Italy |
167 (4.4) $\dfrac{\sqrt{.\overline{1}}}{(1+1) \pmf} + \sqrt{.\overline{1}}$ Paolo Pellegrini, 4/10 Martina Franca, Italy |
168 (4.8) $\left(\left( \sqrt{\dfrac{1}{.\overline{1}}} \right)! +1\right)! \times \sqrt{.\overline{1}\%}$ Paolo Pellegrini, 5/10 Martina Franca, Italy |
169 (4.8) $\left( \log \left( \sqrt[.1]{.1} \right) \pm \right)^{\ \ 1+1}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
170 (3.2) $\dfrac{(1+1-.\overline{1})\%}{.\overline{1} \pmf}$ Paolo Pellegrini, 5/10 Martina Franca, Italy |
||
171 (3.2) $\dfrac{.1+.1-1\%}{.\overline{1}\%}$ Paolo Pellegrini, 9/09 Martina Franca, Italy |
172 (4.4) $\dfrac{1+ \left(\left( \sqrt{\dfrac{1}{.\overline{1}}} \right)! \right)!\%}{1\%}$ Paolo Pellegrini, 5/10 Martina Franca, Italy |
175 (4.6) $\dfrac{ \sqrt{.\overline{1}} -.1}{\left(1+ \sqrt{.\overline{1}} \right) \pmf}$ Paolo Pellegrini, 5/10 Martina Franca, Italy |
177 (4.6) $\dfrac{(1+1)\% - \sqrt{.\overline{1}} \pmf}{.\overline{1} \pmf}$ Paolo Pellegrini, 5/10 Martina Franca, Italy |
179 (3.0) $\dfrac{.1+.1}{.\overline{1}\%} - 1$ Paolo Pellegrini, 9/09 Martina Franca, Italy |
180 (2.4) $\dfrac{1+1}{1.\overline{1}\%}$ Paolo Pellegrini, 9/09 Martina Franca, Italy |
|||||
181 (3.0) $\dfrac{.1+.1}{.\overline{1}\%} + 1$ Steve Wilson, 1/10 Raytown, MO |
183 (4.6) $\dfrac{(1+1)\% + \sqrt{.\overline{1}} \pmf}{.\overline{1} \pmf}$ Paolo Pellegrini, 6/10 Martina Franca, Italy |
185 (5.0) $111 \times \cosh \ln \sqrt{.\overline{1}}$ Paolo Pellegrini, 8/11 Martina Franca, Italy |
189 (3.0) $\dfrac{.11+.1}{.\overline{1}\%}$ Steve Wilson, 1/10 Raytown, MO |
190 (2.4) $\dfrac{1+1-.1}{1\%}$ Steve Wilson, 8/09 Raytown, MO |
||||||
191 (3.2) $\dfrac{.\overline{1}+.1}{.\overline{1}\%} + 1$ Paolo Pellegrini, 6/10 Martina Franca, Italy |
194 (4.8) $\dfrac{1+1}{1\%} + \log(1 \pmm)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
195 (4.8) $\dfrac{.1+\sqrt{.\overline{1}}}{(.\overline{1} +.\overline{1})\%}$ Paolo Pellegrini, 6/10 Martina Franca, Italy |
196 (4.8) $\dfrac{1+1}{1\%} + \log(1 \% \%)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
197 (4.6) $\dfrac{1-1\%-\sqrt{.\overline{1}}}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 6/10 Martina Franca, Italy |
198 (4.6) $\dfrac{1+1}{1\%} + \log(1\%)$ Paolo Pellegrini, 6/10 Martina Franca, Italy |
199 (2.2) $\dfrac{1+1}{1\%} - 1$ Steve Wilson, 8/09 Raytown, MO |
200 (2.2) $\dfrac{1}{1\%} \times (1 + 1)$ Steve Wilson, 8/09 Raytown, MO |
|||
201 (2.2) $\dfrac{1+1}{1\%} + 1$ Steve Wilson, 8/09 Raytown, MO |
202 (4.6) $\cosh((1+1) \operatorname{arccsch} (.1)) + 1$ Paolo Pellegrini, 7/10 Martina Franca, Italy |
203 (4.6) $\dfrac{1-\sqrt{.\overline{1}} +1\%}{\sqrt{.\overline{1}} \%}$ Paolo Pellegrini, 7/10 Martina Franca, Italy |
204 (4.8) $1 - \log \left( \sqrt[1\%]{1 \times 1\%} \pm \right)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
205 (4.8) $1 + 1 - \log \left( \sqrt[1\%]{1\%} \pm \right)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
206 (4.8) $\dfrac{1+1}{1\%} - \log(1 \pmm)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
209 (3.6) $\dfrac{.\overline{1} +.\overline{1} +1\%}{.\overline{1}\%}$ Paolo Pellegrini, 7/10 Martina Franca, Italy |
210 (2.2) $\dfrac{1.1+1}{1\%}$ Steve Wilson, 1/10 Raytown, MO |
|||
211 (3.4) $\dfrac{.1+.\overline{1}}{.1\%} - .\overline{1}$ Paolo Pellegrini, 7/10 Martina Franca, Italy |
212 (4.8) $11 + \coth \ln \sqrt{1 + 1\%}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
213 (4.8) $11 - \log \left( \sqrt[1\%]{1\%} \% \right)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
214 (4.8) $11 - \log \left( \sqrt[1\%]{1\%} \pm \right)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
215 (4.4) $\sqrt[\sqrt{.\overline{1}}] {\left( \sqrt{\dfrac{1}{.\overline{1}}} \right)!} - 1$ Paolo Pellegrini, 7/10 Martina Franca, Italy |
216 (3.8) $\sqrt[ \sqrt{.\overline{1}}] {(1+1+1)!}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
217 (4.4) $\sqrt[\sqrt{.\overline{1}}] {\left( \sqrt{\dfrac{1}{.\overline{1}}} \right)!} + 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
218 (5.0) $\log \left( 1 \% ^{-111} \% \% \right)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
219 (4.6) $\dfrac{ \sqrt{.\overline{1}} -.1 +1\%}{.\overline{1}\%}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
220 (4.8) $(\cosh \ln 11 -1) \pm ^{-1}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
|
221 (4.4) $\dfrac{1}{1 - \operatorname{sech} \ln 1.1}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
222 (4.6) $\log \left(1\%^{-111}\right)$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
223 (5.0) $1 \times \coth \ln \cosh \operatorname{arccsch} \sqrt{111}$ Paolo Pellegrini, 9/14 Martina Franca, Italy |
224 (4.4) $\left( \sqrt{.\overline{1}} + .\overline{1}\right)\%^{-1} - 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
225 (2.6) $\dfrac{1+1}{(1-.\overline{1})\%}$ Paolo Pellegrini, 8/09 Martina Franca, Italy |
226 (4.4) $\left( \sqrt{.\overline{1}} + .\overline{1}\right)\%^{-1} + 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
230 (4.4) $\dfrac{1.1 -\sqrt{.\overline{1}}}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
||||
231 (4.2) $\dfrac{1+1 \pm}{\left( \sqrt{.\overline{1}} +.1\right)\%}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
232 (4.2) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - 11$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
233 (4.4) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - \dfrac{1}{.1}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
234 (4.6) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - \dfrac{1}{.\overline{1}}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
239 (4.6) $\left(\left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \right)! \times \sqrt{.\overline{1}} - 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
240 (4.0) $((1 + 1 + 1)!)! \times \sqrt{.\overline{1}}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
|||||
241 (4.2) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - 1 - 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
242 (4.2) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - 1 \times 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
243 (3.4) $\sqrt[.1] {\sqrt{1+1+1}}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
244 (4.2) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + 1 \times 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
245 (4.2) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + 1 + 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
246 (4.8) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + \dfrac{1}{\sqrt{.\overline{1}}}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
249 (4.4) $\dfrac{\sqrt{.\overline{1}}}{\left( 1+\sqrt{.\overline{1}} \right) \pmf} - 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
250 (3.6) $(1 + 1) \pm ^{-1-1} \pm$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
|||
251 (4.4) $\dfrac{ \sqrt{.\overline{1}}}{\left( 1+\sqrt{.\overline{1}} \right) \pmf} + 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
252 (4.6) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + \dfrac{1}{.\overline{1}}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
253 (4.4) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + \dfrac{1}{.1}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
254 (4.2) $\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + 11$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
259 (4.8) $\left( \sqrt{ \sqrt[-\sqrt{.\overline{1}}] {.\overline{1}\%}} \right)\% - 11$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
260 (4.6) $\dfrac{ \sqrt{ \sqrt[-\sqrt{.\overline{1}}] {.\overline{1}}} -1}{.1}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
|||||
261 (4.2) $\dfrac{ \sqrt{\dfrac{1}{.\overline{1}\%}} -1}{.\overline{1}}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
264 (4.6) $11 \times (1 - \log(1 \pm))!$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
267 (4.0) $\dfrac{1-11\%}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
268 (4.8) $\left( \sqrt{ \sqrt[-\sqrt{.\overline{1}}]{.\overline{1}\%}} \right)\% -1 -1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
269 (4.0) $\dfrac{1-.1}{\sqrt{.\overline{1}}\%} - 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
270 (3.2) $\dfrac{.1+.1+.1}{.\overline{1}\%}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
|||||
271 (4.0) $\dfrac{1-.1}{\sqrt{.\overline{1}}\%} + 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
272 (4.8) $\left( \sqrt{ \sqrt[-\sqrt{.\overline{1}}]{.\overline{1}\%}} \right)\% + 1 + 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
273 (4.2) $\dfrac{1-.1+1\%}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
275 (4.6) $\dfrac{11}{(1-\log(1 \pm))\%}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
276 (4.8) $1 - \dfrac{11}{\log (.1 \% \pm)}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
279 (4.2) $\dfrac{ \sqrt{ \dfrac{1}{.\overline{1}\%}} +1}{.\overline{1}}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
280 (3.4) $\dfrac{.1+.1+.\overline{1}}{.\overline{1}\%}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
||||
281 (4.8) $\left( \sqrt{ \sqrt[-\sqrt{.\overline{1}}]{.\overline{1}\%}} \right)\% + 11$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
282 (4.4) $\dfrac{ \sqrt{.\overline{1}} -(1+1)\%}{.\overline{1}\%}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
287 (4.8) $\dfrac{1- \sqrt{.\overline{1}\%} -1\%}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
288 (3.8) $\dfrac{ \sqrt[.1]{\sqrt{1+1}}}{.\overline{1}}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
289 (3.8) $\dfrac{1}{\sqrt{.\overline{1}}\%} - 11$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
290 (3.6) $\dfrac{.1 +.\overline{1} +.\overline{1}}{.\overline{1}\%}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
|||||
291 (4.2) $\dfrac{1}{\sqrt{.\overline{1}}\%} - \dfrac{1}{.\overline{1}}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
292 (4.4) $\dfrac{\sqrt{.\overline{1}} -1\%}{.\overline{1}\%} + 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
293 (4.8) $\dfrac{1+ \sqrt{.\overline{1}\%} + 1\%}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
294 (4.0) $\dfrac{1 - (1+1)\%}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
295 (4.8) $\log \left( 1 \pm ^{1 - 1/(1\%)} \% \right)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
296 (4.0) $\dfrac{1-1\%}{\sqrt{.\overline{1}}\%} - 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
297 (3.8) $\dfrac{ \dfrac{1}{1\%} -1}{\sqrt{.\overline{1}}}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
298 (3.8) $\dfrac{1}{\sqrt{.\overline{1}}\%} - 1 - 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
299 (3.8) $\dfrac{1}{\sqrt{.\overline{1}}\%} - 1 \times 1$ Steve Wilson, 9/10 Raytown, MO |
300 (2.2) $\dfrac{1+1+1}{1\%}$ Steve Wilson, 2/10 Raytown, MO |
|
301 (3.8) $\dfrac{1}{\sqrt{.\overline{1}}\%} + 1 \times 1$ Steve Wilson, 9/10 Raytown, MO |
302 (3.8) $\dfrac{1}{\sqrt{.\overline{1}}\%} + 1 + 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
303 (3.8) $\dfrac{ \dfrac{1}{1\%} + 1}{\sqrt{.\overline{1}}}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
304 (4.0) $\dfrac{1+1\%}{\sqrt{.\overline{1}}\%} + 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
305 (4.8) $1 + 1 - \log \left( \sqrt[1\%]{1 \pmf} \pm \right)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
306 (4.0) $\dfrac{1+(1+1)\%}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
307 (4.8) $\dfrac{1+\sqrt{.\overline{1}\%} -1\%}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
308 (4.4) $\dfrac{\sqrt{.\overline{1}} +1\%}{.\overline{1}\%} - 1$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
309 (4.2) $\dfrac{ \dfrac{\sqrt{.\overline{1}}}{1\%} +1}{.\overline{1}}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
310 (4.0) $\dfrac{\sqrt{.1-1\%} +1\%}{1 \pmf}$ Paolo Pellegrini, 9/10 Martina Franca, Italy |
|
311 (3.8) $\dfrac{1}{\sqrt{.\overline{1}}\%} + 11$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
312 (4.8) $\left(\left( \sqrt{.\overline{1}} \right)! \right)! \times \left(\sqrt{.\overline{1}} + .1 \right)$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
313 (4.8) $\dfrac{1+ \sqrt{.\overline{1}\%} +1\%}{\sqrt{.\overline{1}}\%}$ Steve Wilson, 9/10 Raytown, MO |
314 (4.8) $11 - \log \left( \sqrt[1\%]{1 \pmf} \pm \right)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
315 (5.6) $(1 + \ln\sqrt{\exp (.1)}) \times \dfrac{\log(1\pm)}{-1\%}$ Steve Wilson, 7/23 Lawrence, KS |
316 (5.6) $(-\log(1\pm))!^{-\log(1\pm)} + \dfrac{1}{1\%}$ Steve Wilson, 7/23 Lawrence, KS |
318 (4.4) $\dfrac{ \sqrt{.\overline{1}} +(1+1)\%}{.\overline{1}\%}$ Steve Wilson, 9/10 Raytown, MO |
319 (4.8) $\dfrac{ \sqrt[.1]{\sec \arctan 1}}{.1} - 1$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
320 (3.6) $\dfrac{ \sqrt[.1]{\sqrt{1+1}}}{.1}$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
||
321 (4.8) $\dfrac{ \sqrt[.1]{\sec \arctan 1}}{.1} + 1$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
323 (4.6) $\dfrac{\sqrt{.\overline{1}} - 1\%}{1 \pmf} - \sqrt{.\overline{1}}$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
324 (4.8) $\left( 1 + \sqrt{.\overline{1}} \right) \times \sqrt{ \sqrt[-.1]{\sqrt{.\overline{1}}}}$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
325 (4.6) $\dfrac{\sqrt{.\overline{1}} + .1}{\left(1 + \sqrt{.\overline{1}}\right) \pmf}$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
327 (4.0) $\dfrac{1.1-1\%}{\sqrt{.\overline{1}}\%}$ Steve Wilson, 9/10 Raytown, MO |
329 (3.8) $\dfrac{11}{\sqrt{.\overline{1}\%}} - 1$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
330 (3.8) $\dfrac{11}{\sqrt{.\overline{11}\%}}$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
||||
331 (3.8) $\dfrac{11}{\sqrt{.\overline{1}\%}} + 1$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
332 (4.4) $\dfrac{\sqrt{.\overline{1}}}{1 \pmf} - 1 - \sqrt{.\overline{1}}$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
333 (3.6) $\dfrac{111}{\sqrt{.\overline{1}}}$ Steve Wilson, 11/09 Raytown, MO |
334 (4.4) $\dfrac{\sqrt{.\overline{1}}}{1 \pmf} + 1 - \sqrt{.\overline{1}}$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
336 (4.8) $\dfrac{.\overline{1} + (1 - .\overline{1}) \pmf}{\sqrt{.\overline{1}} \pmf}$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
340 (4.4) $\dfrac{11 + \sqrt{.\overline{1}}}{\sqrt{.\overline{1}\%}}$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
|||||
342 (5.4) $(1 + (-\log(1\pm))!)^{-\log(1\pm)} - 1$ Steve Wilson, 7/23 Lawrence, KS |
343 (4.4) $\sqrt{\sqrt[-.1]{\sqrt{.\overline{1}}}} + \dfrac{1}{1\%}$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
344 (5.4) $(1 + (-\log(1\pm))!)^{-\log(1\pm)} + 1$ Steve Wilson, 7/23 Lawrence, KS |
350 (4.6) $\dfrac{\sqrt{.\overline{1}} - .1}{\left(1 - \sqrt{.\overline{1}}\right) \pmf}$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
|||||||
352 (4.6) $\dfrac{11}{\sqrt[.1]{\cos \arctan 1}}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
360 (3.8) $\dfrac{11 + 1}{\sqrt{.\overline{1}\%}}$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
|||||||||
361 (4.8) $\cosh \left( \dfrac{ \operatorname{arccsch} \sqrt{1+1}}{.1} \right) - 1$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
362 (4.8) $\cosh \left( (11-1) \times \operatorname{arcsinh} \cos \arctan 1 \right)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
363 (4.8) $\cosh \left( \dfrac{ \operatorname{arccsch} \sqrt{1+1}}{.1} \right) + 1$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
370 (4.6) $\dfrac{1 - .1 + \sqrt{.\overline{1}}}{\sqrt{.\overline{1}}\%}$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
|||||||
372 (5.6) $\dfrac{\sqrt{.\overline{1}}}{(1 - .\overline{1}) \pmf} + \log(1\pm)$ Steve Wilson, 7/23 Lawrence, KS |
373 (5.6) $\dfrac{\sqrt{.\overline{1}}}{(1 - .\overline{1}) \pmf} + \log(1\%)$ Steve Wilson, 7/23 Lawrence, KS |
374 (4.2) $\dfrac{\sqrt{.\overline{1}}}{(1 - .\overline{1}) \pmf} - 1$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
375 (4.2) $\dfrac{\sqrt{.\overline{11}}}{(1 - .\overline{1}) \pmf}$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
376 (4.2) $\dfrac{\sqrt{.\overline{1}}}{(1 - .\overline{1}) \pmf} + 1$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
377 (5.6) $\dfrac{\sqrt{.\overline{1}}}{(1 - .\overline{1}) \pmf} - \log(1\%)$ Steve Wilson, 7/23 Lawrence, KS |
378 (5.6) $\dfrac{\sqrt{.\overline{1}}}{(1 - .\overline{1}) \pmf} - \log(1\pm)$ Steve Wilson, 7/23 Lawrence, KS |
||||
381 (4.6) $\dfrac{ \sqrt{.\overline{1}} +.1-1\%}{.\overline{1}\%}$ Steve Wilson, 9/10 Raytown, MO |
383 (5.8) $(\log(1\%))^{-\log(1\%\%\pm)} \times \log(1\pm) - 1$ Steve Wilson, 7/23 Lawrence, KS |
384 (5.8) $\dfrac{(\log(1\%))^{-\log(1\%\%\pm)} \times \log(1\pm)}{1}$ Steve Wilson, 7/23 Lawrence, KS |
385 (5.8) $(\log(1\%))^{-\log(1\%\%\pm)} \times \log(1\pm) + 1$ Steve Wilson, 7/23 Lawrence, KS |
389 (4.6) $\dfrac{\sqrt{.\overline{1}} + .1}{\sqrt{.\overline{1}\%}} - 1$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
390 (4.6) $\dfrac{\sqrt{.\overline{11}} + .1}{\sqrt{.\overline{1}\%}}$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
|||||
391 (4.6) $\dfrac{\sqrt{.\overline{1}} + .1}{\sqrt{.\overline{1}\%}} + 1$ Paolo Pellegrini, 5/11 Martina Franca, Italy |
395 (4.8) $\dfrac{ \sinh \left( \ln \dfrac{1}{.1} \right) - 1}{1\%}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
396 (4.8) $\left( 1 - \dfrac{1}{1\%} \right) \times \log (1 \% \%)$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
397 (4.6) $\dfrac{1 - 1\% + \sqrt{.\overline{1}}}{\sqrt{.\overline{1}} \%}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
399 (4.4) $\dfrac{ \sqrt{.\overline{1}} +11\%}{.\overline{1}\%}$ Steve Wilson, 9/10 Raytown, MO |
400 (3.4) $\dfrac{1 - .\overline{1}}{(.\overline{1} + .\overline{1})\%}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
Page 1 (1-400), Page 2 (401+).