\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \)

Integermania!

Quattro Ones

This problem was proposed by Integermaniac master Paolo Pellegrini. Create each of the positive integers using four copies of 1, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here!  Five "new" or "improved" solutions per person per month are accepted.

Page 1 (1-400), Page 2 (401+).

  1 (1.0)
$1 + 1 - 1 \times 1$
Paolo Pellegrini, 3/09
Martina Franca, Italy
2 (1.0)
$1 + 1 + 1 - 1$
Paolo Pellegrini, 3/09
Martina Franca, Italy
3 (1.0)
$1 + 1 + 1 \times 1$
Paolo Pellegrini, 3/09
Martina Franca, Italy
4 (1.0)
$1 + 1 + 1 + 1$
Paolo Pellegrini, 3/09
Martina Franca, Italy
5 (2.2)
$\dfrac{1}{(1+1)\times .1}$
Ralph Jeffords, 5/09
Centreville, VA
6 (2.4)
$\dfrac{1}{.1+.1}+1$
Steve Wilson, 4/09
Raytown, MO
7 (2.4)
$\dfrac{1}{.\overline{1}} - 1 - 1$
Ralph Jeffords, 3/09
Centreville, VA
8 (2.2)
$\dfrac{1}{.1} - 1 - 1$
Ralph Jeffords, 4/09
Centreville, VA
9 (2.0)
$11 - 1 - 1$
Steve Wilson, 3/09
Raytown, MO
10 (2.0)
$11 - 1 \times 1$
Steve Wilson, 3/09
Raytown, MO
  11 (2.0)
$11 - 1 + 1$
Steve Wilson, 3/09
Raytown, MO
12 (2.0)
$11 + 1 \times 1$
Steve Wilson, 3/09
Raytown, MO
13 (2.0)
$11 + 1 + 1$
Steve Wilson, 3/09
Raytown, MO
14 (3.6)
$11 + \dfrac{1}{\sqrt{.\overline{1}}}$
Ralph Jeffords, 4/09
Centreville, VA
15 (3.8)
$\dfrac{1}{(1+1) \times \sqrt{.\overline{1}\%}}$
Paolo Pellegrini, 4/09
Martina Franca, Italy
16 (4.0)
$\dfrac{1}{.1-\sqrt{.\overline{1}\%}} + 1$
Paolo Pellegrini, 4/09
Martina Franca, Italy
17 (2.4)
$\dfrac{1+1}{.\overline{1}} -1$
Ralph Jeffords, 3/09
Centreville, VA
18 (2.4)
$\dfrac{1\times 1+1}{.\overline{1}}$
Ralph Jeffords, 3/09
Centreville, VA
19 (2.2)
$\dfrac{1+1}{.1}-1$
Steve Wilson, 4/09
Raytown, MO
20 (2.2)
$\dfrac{1+1}{.1} \times 1$
Steve Wilson, 4/09
Raytown, MO
  21 (2.2)
$\dfrac{1+1}{.1} + 1$
Steve Wilson, 4/09
Raytown, MO
22 (2.0)
$11 + 11$
Steve Wilson, 4/09
Raytown, MO
23 (3.8)
$\left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! - 1$
Paolo Pellegrini, 4/09
Martina Franca, Italy
24 (3.2)
$(1 + 1 + 1 + 1)!$
Carolyn Neptune, 3/09
Prairie Village, KS
25 (3.4)
$\dfrac{.\overline{1} + .\overline{1}}{(1- .\overline{1})\%}$
Paolo Pellegrini, 4/09
Martina Franca, Italy
26 (4.0)
$\dfrac{1}{.\overline{1} \times \sqrt{.\overline{1}}} - 1$
Paolo Pellegrini, 4/09
Martina Franca, Italy
27 (2.4)
$\dfrac{1+1+1}{.\overline{1}}$
Carolyn Neptune, 3/09
Prairie Village, KS
28 (3.8)
$\dfrac{1}{\sqrt{.\overline{1}\%}} - 1 - 1$
Ralph Jeffords, 6/09
Centreville, VA
29 (3.6)
$\sqrt{ \dfrac{1-.1}{1 \pmf}} - 1$
Paolo Pellegrini, 12/09
Martina Franca, Italy
30 (2.2)
$\dfrac{1+1+1}{.1}$
Dave Jones, 4/09
Coventry, England
  31 (3.4)
$\sqrt{ \sqrt[.1]{1+1}} - 1$
Paolo Pellegrini, 12/09
Martina Franca, Italy
32 (3.4)
$\sqrt[.1+.1]{1+1}$
Ralph Jeffords, 4/09
Centreville, VA
33 (3.4)
$\sqrt{ \sqrt[.1]{1+1}} + 1$
Paolo Pellegrini, 12/09
Martina Franca, Italy
34 (3.6)
$\dfrac{11}{\sqrt{.\overline{1}}} + 1$
Paolo Pellegrini, 5/09
Martina Franca, Italy
35 (4.6)
$\dfrac{ \sqrt{.\overline{1}} - .1}{\left( 1-\sqrt{.\overline{1}}\right) \%}$
Ralph Jeffords, 6/09
Centreville, VA
36 (3.6)
$\dfrac{11+1}{\sqrt{.\overline{1}}}$
Paolo Pellegrini, 5/09
Martina Franca, Italy
37 (3.6)
$111 \times \sqrt{.\overline{1}}$
Paolo Pellegrini, 5/09
Martina Franca, Italy
38 (4.4)
$\sqrt[-\sqrt{.\overline{1}}]{ \sqrt{.\overline{1}}} + 11$
Ralph Jeffords, 8/09
Centreville, VA
39 (4.2)
$\dfrac{1}{\sqrt{.\overline{1}\%}} + \dfrac{1}{.\overline{1}}$
Ralph Jeffords, 6/09
Centreville, VA
40 (3.8)
$\dfrac{ \dfrac{1}{\sqrt{.\overline{1}}} +1}{.1}$
Paolo Pellegrini, 5/09
Martina Franca, Italy
  41 (3.8)
$\dfrac{1}{\sqrt{.\overline{1}\%}} + 11$
Paolo Pellegrini, 5/09
Martina Franca, Italy
42 (4.6)
$(1 + 1) \times \coth \ln \sqrt{1.1}$
Steve Wilson, 9/09
Raytown, MO
43 (4.8)
$-\log(1\%\%) \times 11 - 1$
Ralph Jeffords, 10/09
Centreville, VA
44 (3.2)
$\dfrac{.1}{(.\overline{1} + .\overline{1})\%} - 1$
Ralph Jeffords, 8/09
Centreville, VA
45 (2.4)
$\dfrac{1-.1}{(1+1)\%}$
Dave Jones, 4/09
Coventry, England
46 (3.2)
$\dfrac{.1}{(.\overline{1} + .\overline{1})\%} + 1$
Ralph Jeffords, 8/09
Centreville, VA
47 (4.6)
$\dfrac{1}{(1+1)\%} + \log(1 \pm)$
Ralph Jeffords, 10/09
Centreville, VA
48 (4.6)
$\dfrac{1}{(1+1)\%} + \log(1\%)$
Steve Wilson, 9/09
Raytown, MO
49 (2.2)
$\dfrac{1}{(1+1)\%} - 1$
Dave Jones, 4/09
Coventry, England
50 (2.2)
$\dfrac{1}{(1+1)\%} \times 1$
Dave Jones, 4/09
Coventry, England
  51 (2.2)
$\dfrac{1}{(1+1)\%} + 1$
Dave Jones, 4/09
Coventry, England
52 (4.6)
$\dfrac{1}{(1+1)\%} - \log(1\%)$
Steve Wilson, 9/09
Raytown, MO
53 (4.6)
$\dfrac{1}{(1+1)\%} - \log(1 \pm)$
Ralph Jeffords, 10/09
Centreville, VA
54 (3.6)
$\dfrac{(1+1+1)!}{.\overline{1}}$
Carolyn Neptune, 3/09
Prairie Village, KS
55 (2.2)
$\dfrac{1.1}{(1+1)\%}$
Steve Wilson, 5/09
Raytown, MO
56 (4.6)
$1 - \dfrac{1.1}{(\log(1\%))\%}$
Steve Wilson, 10/09
Raytown, MO
57 (4.0)
$\dfrac{1+1-.1}{\sqrt{.\overline{1}\%}}$
Paolo Pellegrini, 6/09
Martina Franca, Italy
58 (4.8)
$\sqrt{1 + \cosh \left( \dfrac{\operatorname{arccsch}(1 \times 1)}{.1} \right) }$
Paolo Pellegrini, 1/18
Martina Franca, Italy
59 (3.8)
$\dfrac{1+1}{\sqrt{.\overline{1}\%}} - 1$
Paolo Pellegrini, 6/09
Martina Franca, Italy
60 (3.4)
$\dfrac{(1+1+1)!}{.1}$
Paolo Pellegrini, 6/09
Martina Franca, Italy
  61 (3.8)
$\dfrac{1+1}{\sqrt{.\overline{1}\%}} + 1$
Paolo Pellegrini, 6/09
Martina Franca, Italy
62 (4.4)
$\dfrac{ \left(\left( \dfrac{1}{\sqrt{.\overline{1}}}\right)! \right)!\% -1}{.1}$
Ralph Jeffords, 11/09
Centreville, VA
63 (3.8)
$\dfrac{1.1+1}{\sqrt{.\overline{1}\%}}$
Paolo Pellegrini, 6/09
Martina Franca, Italy
64 (3.8)
$(1+1)^{\left( 1/ \sqrt{.\overline{1}} \right)!}$
Steve Wilson, 9/09
Raytown, MO
65 (4.6)
$\dfrac{.1+\sqrt{.\overline{1}}}{\left( 1-\sqrt{.\overline{1}}\right)\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
66 (3.8)
$\left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \times 11$
Paolo Pellegrini, 7/09
Martina Franca, Italy
67 (4.4)
$\dfrac{1-\sqrt{.\overline{1}}}{1\%} + \sqrt{.\overline{1}}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
68 (4.8)
$\dfrac{1}{1\%} - \sqrt[.1]{\sec \arctan 1}$
Paolo Pellegrini, 1/18
Martina Franca, Italy
69 (4.4)
$\dfrac{ \left(1.1 - \sqrt{.\overline{1}} \right)\%}{.\overline{1} \pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
70 (3.8)
$\dfrac{1 - \sqrt{.1 - 1\%}}{1\%}$
Paolo Pellegrini, 7/09
Martina Franca, Italy
  71 (4.2)
$\sqrt{1+ \left(1+ \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \right)!}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
72 (2.8)
$\dfrac{ \dfrac{1}{.\overline{1}} -1}{.\overline{1}}$
Steve Wilson, 5/09
Raytown, MO
73 (4.2)
$\left( \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \right)! \times .1 + 1$
Ralph Jeffords, 11/09
Centreville, VA
74 (3.8)
$\dfrac{1}{ \left(1+ \sqrt{.\overline{1}} \right) \%} - 1$
Paolo Pellegrini, 7/09
Martina Franca, Italy
75 (3.8)
$\dfrac{1}{ \left(1+ \sqrt{.\overline{1}} \right) \%} \times 1$
Paolo Pellegrini, 7/09
Martina Franca, Italy
76 (3.8)
$\dfrac{1}{ \left(1+ \sqrt{.\overline{1}} \right) \%} + 1$
Ralph Jeffords, 7/09
Centreville, VA
77 (4.6)
$11 \times (1 - \log(1 \pmm))$
Paolo Pellegrini, 4/10
Martina Franca, Italy
78 (4.4)
$\dfrac{ \dfrac{1}{.\overline{1}} - \sqrt{.\overline{1}}}{.\overline{1}}$
Paolo Pellegrini, 11/09
Martina Franca, Italy
79 (2.8)
$\dfrac{.1}{.\overline{1}\%} - 11$
Steve Wilson, 5/09
Raytown, MO
80 (2.6)
$\dfrac{1-.1-.1}{1\%}$
Ralph Jeffords, 11/09
Centreville, VA
  81 (2.6)
$\dfrac{ \dfrac{1}{.1} -1}{.\overline{1}}$
Steve Wilson, 1/10
Raytown, MO
82 (2.8)
$\dfrac{1}{.\overline{1} \times .\overline{1}} + 1$
Ralph Jeffords, 9/09
Centreville, VA
83 (4.8)
$(.\overline{1})^ {\log(1\%)} + 1 + 1$
Steve Wilson, 10/09
Raytown, MO
84 (4.6)
$\dfrac{.1}{.\overline{1}\%} - \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)!$
Kevin Schwarz, 8/09
Olathe, Kansas
85 (4.8)
$\dfrac{\sinh (\ln (1+1)) + .1}{1\%}$
Paolo Pellegrini, 1/18
Martina Franca, Italy
86 (4.6)
$\dfrac{ \left(1- \sqrt{.\overline{1}\%} \right)\%}{.\overline{1} \pm} - 1$
Paolo Pellegrini, 1/10
Martina Franca, Italy
87 (4.4)
$\dfrac{.1}{.\overline{1}\%} - \dfrac{1}{\sqrt{.\overline{1}}}$
Kevin Schwarz, 7/09
Olathe, Kansas
88 (2.8)
$\dfrac{.1}{.\overline{1}\%} - 1 - 1$
Steve Wilson, 5/09
Raytown, MO
89 (2.2)
$\dfrac{1}{1\%} - 11$
Kevin Schwarz, 7/09
Olathe, Kansas
90 (2.4)
$\dfrac{1}{1\%} - \dfrac{1}{.1}$
Ralph Jeffords, 9/09
Centreville, VA
  91 (2.4)
$\dfrac{1-.1}{1\%} + 1$
Steve Wilson, 1/10
Raytown, MO
92 (2.8)
$\dfrac{.1}{.\overline{1}\%} + 1 + 1$
Steve Wilson, 5/09
Raytown, MO
93 (4.4)
$\dfrac{.1}{.\overline{1}\%} + \dfrac{1}{\sqrt{.\overline{1}}}$
Kevin Schwarz, 7/09
Olathe, Kansas
94 (4.0)
$\dfrac{1}{1\%} - \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)!$
Ralph Jeffords, 7/09
Centreville, VA
95 (3.6)
$\dfrac{.1 + .\overline{1}}{(.\overline{1} +.\overline{1})\%}$
Paolo Pellegrini, 12/09
Martina Franca, Italy
96 (3.8)
$\sqrt{ \dfrac{ \sqrt[.1]{1+1}}{.\overline{1}}}$
Paolo Pellegrini, 12/09
Martina Franca, Italy
97 (3.8)
$\dfrac{1}{1\%} - \dfrac{1}{\sqrt{.\overline{1}}}$
Kevin Schwarz, 7/09
Olathe, Kansas
98 (2.2)
$\dfrac{1}{1\%} - 1 - 1$
Kevin Schwarz, 6/09
Olathe, Kansas
99 (2.2)
$\dfrac{1}{1\%} - 1 \times 1$
Kevin Schwarz, 6/09
Olathe, Kansas
100 (2.2)
$\dfrac{1}{1\%} \times 1 \times 1$
Kevin Schwarz, 6/09
Olathe, Kansas
  101 (2.2)
$\dfrac{1}{1\%} + 1 \times 1$
Kevin Schwarz, 6/09
Olathe, Kansas
102 (2.2)
$\dfrac{1}{1\%} + 1 + 1$
Kevin Schwarz, 6/09
Olathe, Kansas
103 (3.8)
$\dfrac{1}{1\%} + \dfrac{1}{\sqrt{.\overline{1}}}$
Kevin Schwarz, 7/09
Olathe, Kansas
104 (4.6)
$\dfrac{1}{1\%} - \log(1 \pm) + 1$
Steve Wilson, 10/09
Raytown, MO
105 (4.8)
$\dfrac{1}{1\%} - \log(1\%\%) + 1$
Steve Wilson, 10/09
Raytown, MO
106 (4.0)
$\dfrac{1}{1\%} + \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)!$
Kevin Schwarz, 8/09
Olathe, Kansas
107 (4.6)
$111 + \log(1\%\%)$
Ralph Jeffords, 12/09
Centreville, VA
108 (2.4)
$\dfrac{11+1}{.\overline{1}}$
Ralph Jeffords, 7/09
Centreville, VA
109 (2.2)
$\dfrac{11}{.1} - 1$
Ralph Jeffords, 7/09
Centreville, VA
110 (2.0)
$111 - 1$
Kevin Schwarz, 4/09
Olathe, Kansas
  111 (2.0)
$111 \times 1$
Brooke Atkinson, 4/09
Olathe, KS
112 (2.0)
$111 + 1$
Kevin Schwarz, 4/09
Olathe, Kansas
113 (4.4)
$111 - \log(1\%)$
Steve Wilson, 11/09
Raytown, MO
114 (4.4)
$111 - \log(1 \pm)$
Paolo Pellegrini, 2/10
Martina Franca, Italy
115 (4.6)
$111 - \log(1\%\%)$
Paolo Pellegrini, 2/10
Martina Franca, Italy
116 (4.6)
$111 - \log(1 \% \pm)$
Paolo Pellegrini, 2/10
Martina Franca, Italy
117 (4.4)
$\dfrac{ \left(1+ \sqrt{.1-1\%} \right)\%}{.\overline{1} \pmf}$
Paolo Pellegrini, 11/09
Martina Franca, Italy
118 (3.2)
$\dfrac{.\overline{1} +(1+1)\%}{.\overline{1}\%}$
Paolo Pellegrini, 8/09
Martina Franca, Italy
119 (3.6)
$\left( \dfrac{1}{.1+.1} \right)! - 1$
Steve Wilson, 8/09
Raytown, MO
120 (2.2)
$\dfrac{11+1}{.1}$
Ralph Jeffords, 7/09
Centreville, VA
  121 (2.0)
$11 \times 11$
Brooke Atkinson, 6/09
Olathe, KS
122 (4.4)
$(\coth \operatorname{arccsch} 11)^{1+1}$
Paolo Pellegrini, 8/10
Martina Franca, Italy
123 (4.8)
$(\sin \operatorname{arccot} 11)^{\log(1\%)} + 1$
Paolo Pellegrini, 1/18
Martina Franca, Italy
124 (4.2)
$\left( \sqrt[-\sqrt{.\overline{1}}]{(1+1)\%} \right) \pm -1$
Paolo Pellegrini, 11/09
Martina Franca, Italy
125 (2.6)
$\dfrac{1}{(1-.1-.1)\%}$
Paolo Pellegrini, 7/09
Martina Franca, Italy
126 (4.2)
$\left( \sqrt[-\sqrt{.\overline{1}}]{(1+1)\%} \right) \pm +1$
Paolo Pellegrini, 11/09
Martina Franca, Italy
127 (4.6)
$\dfrac{1}{1\%} + \sqrt[-\sqrt{.\overline{1}}]{\sqrt{.\overline{1}}}$
Paolo Pellegrini, 11/09
Martina Franca, Italy
128 (5.2)
$-(\log(1\%))^{(1-\log(1\%))!+1}$
Steve Wilson, 3/10
Raytown, MO
129 (4.4)
$\dfrac{\left( 1.1+\sqrt{.\overline{1}} \right)\%}{.\overline{1} \pmf}$
Paolo Pellegrini, 1/10
Martina Franca, Italy
130 (3.8)
$\dfrac{1+ \sqrt{.1-1\%}}{1\%}$
Ralph Jeffords, 10/09
Centreville, VA
  131 (4.6)
$\dfrac{ \sqrt{.\overline{1}} +.1}{\sqrt{.\overline{1}} \%} + 1$
Ralph Jeffords, 5/10
Centreville, VA
132 (4.8)
$\dfrac{1 - 1\%}{(\sinh \ln (1+1))\%}$
Paolo Pellegrini, 1/18
Martina Franca, Italy
133 (4.4)
$\dfrac{1+\sqrt{.\overline{1}}}{1\%} - \sqrt{.\overline{1}}$
Paolo Pellegrini, 1/10
Martina Franca, Italy
134 (5.2)
$\dfrac{11}{.1} + (-\log(1\%\%))!$
Ralph Jeffords, 5/10
Centreville, VA
135 (4.0)
$\dfrac{1-.1}{\left(1- \sqrt{.\overline{1}} \right)\%}$
Paolo Pellegrini, 1/10
Martina Franca, Italy
136 (5.8)
$\dfrac{ \log(1\% \pm)}{-.\overline{1} \times \sqrt{.\overline{1}}} + 1$
Ralph Jeffords, 5/10
Centreville, VA
137 (5.4)
$\dfrac{\log(1\%\%) - .11}{(\log(1\pm))\%}$
Steve Wilson, 7/23
Lawrence, KS
138 (5.8)
$((-\log(1\%\%))! - 1) \times \left( \dfrac{1}{\sqrt{.\overline{1}}} \right)!$
Ralph Jeffords, 5/10
Centreville, VA
139 (4.8)
$\dfrac{1}{ \left( \sqrt{ \dfrac{1}{.\overline{1}} !}\right)!\% \pm} + .\overline{1}$
Paolo Pellegrini, 4/10
Martina Franca, Italy
140 (4.6)
$\dfrac{11 - \log(1 \pm)}{.1}$
Paolo Pellegrini, 2/10
Martina Franca, Italy
      143 (4.4)
$\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - \dfrac{1}{1\%}$
Paolo Pellegrini, 1/10
Martina Franca, Italy
144 (4.4)
$(.1 + .1) \times \left(\left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \right)!$
Paolo Pellegrini, 2/10
Martina Franca, Italy
145 (4.6)
$\dfrac{1 - \sqrt{.\overline{1}\%}}{\left( 1- \sqrt{.\overline{1}} \right)\%}$
Paolo Pellegrini, 3/10
Martina Franca, Italy
  147 (4.8)
$\log \left( \sqrt[(1+1)\%]{\dfrac{1}{1 \pmf}} \pm \right)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
148 (4.8)
$\log \left( \sqrt[(1+1)\%]{\dfrac{1}{1 \pmf}} \% \right)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
149 (3.8)
$\dfrac{1}{ \left( 1- \sqrt{.\overline{1}} \right) \%} - 1$
Ralph Jeffords, 4/10
Centreville, VA
150 (3.8)
$\dfrac{1}{ \left( 1- \sqrt{.\overline{1}} \right) \%} \times 1$
Ralph Jeffords, 4/10
Centreville, VA
  151 (3.8)
$\dfrac{1}{\left( 1- \sqrt{.\overline{1}} \right) \%} + 1$
Ralph Jeffords, 4/10
Centreville, VA
152 (4.6)
$(.1 + .\overline{1}) \times \left(\left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \right)!$
Paolo Pellegrini, 3/10
Martina Franca, Italy
153 (4.8)
$\log \left( \dfrac{1}{ \sqrt[(1+1)\%]{1 \pmf} \pmf} \right)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
154 (4.8)
$1 - \log \left( \sqrt[(1+1)\%]{1 \pmf} \pm \right)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
155 (4.6)
$\dfrac{1+\sqrt{.\overline{1}\%}}{ \left(1- \sqrt{.\overline{1}} \right)\%}$
Paolo Pellegrini, 4/10
Martina Franca, Italy
        160 (4.4)
$\dfrac{.1 + \sqrt{\dfrac{1}{.\overline{1}}} !\%}{1 \pmf}$
Paolo Pellegrini, 4/10
Martina Franca, Italy
  161 (4.8)
$\coth \ln \coth ((1+1) \times \operatorname{arcsinh}(1+1))$
Paolo Pellegrini, 1/18
Martina Franca, Italy
162 (2.8)
$\dfrac{1+1}{.\overline{1} \times .\overline{1}}$
Paolo Pellegrini, 9/09
Martina Franca, Italy
163 (4.8)
$\cosh ((1+1) \times \operatorname{arccsch} .1\overline{1})$
Paolo Pellegrini, 1/18
Martina Franca, Italy
164 (4.8)
$1 + \cosh ((1+1) \times \operatorname{arccsch} .\overline{1})$
Paolo Pellegrini, 1/18
Martina Franca, Italy
165 (4.0)
$\dfrac{11\%}{\left(1- \sqrt{.\overline{1}} \right) \pmf}$
Paolo Pellegrini, 9/09
Martina Franca, Italy
  167 (4.4)
$\dfrac{\sqrt{.\overline{1}}}{(1+1) \pmf} + \sqrt{.\overline{1}}$
Paolo Pellegrini, 4/10
Martina Franca, Italy
168 (4.8)
$\left(\left( \sqrt{\dfrac{1}{.\overline{1}}} \right)! +1\right)! \times \sqrt{.\overline{1}\%}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
169 (4.8)
$\left( \log \left( \sqrt[.1]{.1} \right) \pm \right)^{\ \ 1+1}$
Paolo Pellegrini, 1/18
Martina Franca, Italy
170 (3.2)
$\dfrac{(1+1-.\overline{1})\%}{.\overline{1} \pmf}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
  171 (3.2)
$\dfrac{.1+.1-1\%}{.\overline{1}\%}$
Paolo Pellegrini, 9/09
Martina Franca, Italy
172 (4.4)
$\dfrac{1+ \left(\left( \sqrt{\dfrac{1}{.\overline{1}}} \right)! \right)!\%}{1\%}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
    175 (4.6)
$\dfrac{ \sqrt{.\overline{1}} -.1}{\left(1+ \sqrt{.\overline{1}} \right) \pmf}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
  177 (4.6)
$\dfrac{(1+1)\% - \sqrt{.\overline{1}} \pmf}{.\overline{1} \pmf}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
  179 (3.0)
$\dfrac{.1+.1}{.\overline{1}\%} - 1$
Paolo Pellegrini, 9/09
Martina Franca, Italy
180 (2.4)
$\dfrac{1+1}{1.\overline{1}\%}$
Paolo Pellegrini, 9/09
Martina Franca, Italy
  181 (3.0)
$\dfrac{.1+.1}{.\overline{1}\%} + 1$
Steve Wilson, 1/10
Raytown, MO
  183 (4.6)
$\dfrac{(1+1)\% + \sqrt{.\overline{1}} \pmf}{.\overline{1} \pmf}$
Paolo Pellegrini, 6/10
Martina Franca, Italy
  185 (5.0)
$111 \times \cosh \ln \sqrt{.\overline{1}}$
Paolo Pellegrini, 8/11
Martina Franca, Italy
      189 (3.0)
$\dfrac{.11+.1}{.\overline{1}\%}$
Steve Wilson, 1/10
Raytown, MO
190 (2.4)
$\dfrac{1+1-.1}{1\%}$
Steve Wilson, 8/09
Raytown, MO
  191 (3.2)
$\dfrac{.\overline{1}+.1}{.\overline{1}\%} + 1$
Paolo Pellegrini, 6/10
Martina Franca, Italy
    194 (4.8)
$\dfrac{1+1}{1\%} + \log(1 \pmm)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
195 (4.8)
$\dfrac{.1+\sqrt{.\overline{1}}}{(.\overline{1} +.\overline{1})\%}$
Paolo Pellegrini, 6/10
Martina Franca, Italy
196 (4.8)
$\dfrac{1+1}{1\%} + \log(1 \% \%)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
197 (4.6)
$\dfrac{1-1\%-\sqrt{.\overline{1}}}{\sqrt{.\overline{1}}\%}$
Paolo Pellegrini, 6/10
Martina Franca, Italy
198 (4.6)
$\dfrac{1+1}{1\%} + \log(1\%)$
Paolo Pellegrini, 6/10
Martina Franca, Italy
199 (2.2)
$\dfrac{1+1}{1\%} - 1$
Steve Wilson, 8/09
Raytown, MO
200 (2.2)
$\dfrac{1}{1\%} \times (1 + 1)$
Steve Wilson, 8/09
Raytown, MO
  201 (2.2)
$\dfrac{1+1}{1\%} + 1$
Steve Wilson, 8/09
Raytown, MO
202 (4.6)
$\cosh((1+1) \operatorname{arccsch} (.1)) + 1$
Paolo Pellegrini, 7/10
Martina Franca, Italy
203 (4.6)
$\dfrac{1-\sqrt{.\overline{1}} +1\%}{\sqrt{.\overline{1}} \%}$
Paolo Pellegrini, 7/10
Martina Franca, Italy
204 (4.8)
$1 - \log \left( \sqrt[1\%]{1 \times 1\%} \pm \right)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
205 (4.8)
$1 + 1 - \log \left( \sqrt[1\%]{1\%} \pm \right)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
206 (4.8)
$\dfrac{1+1}{1\%} - \log(1 \pmm)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
    209 (3.6)
$\dfrac{.\overline{1} +.\overline{1} +1\%}{.\overline{1}\%}$
Paolo Pellegrini, 7/10
Martina Franca, Italy
210 (2.2)
$\dfrac{1.1+1}{1\%}$
Steve Wilson, 1/10
Raytown, MO
  211 (3.4)
$\dfrac{.1+.\overline{1}}{.1\%} - .\overline{1}$
Paolo Pellegrini, 7/10
Martina Franca, Italy
212 (4.8)
$11 + \coth \ln \sqrt{1 + 1\%}$
Paolo Pellegrini, 1/18
Martina Franca, Italy
213 (4.8)
$11 - \log \left( \sqrt[1\%]{1\%} \% \right)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
214 (4.8)
$11 - \log \left( \sqrt[1\%]{1\%} \pm \right)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
215 (4.4)
$\sqrt[\sqrt{.\overline{1}}] {\left( \sqrt{\dfrac{1}{.\overline{1}}} \right)!} - 1$
Paolo Pellegrini, 7/10
Martina Franca, Italy
216 (3.8)
$\sqrt[ \sqrt{.\overline{1}}] {(1+1+1)!}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
217 (4.4)
$\sqrt[\sqrt{.\overline{1}}] {\left( \sqrt{\dfrac{1}{.\overline{1}}} \right)!} + 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
218 (5.0)
$\log \left( 1 \% ^{-111} \% \% \right)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
219 (4.6)
$\dfrac{ \sqrt{.\overline{1}} -.1 +1\%}{.\overline{1}\%}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
220 (4.8)
$(\cosh \ln 11 -1) \pm ^{-1}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
  221 (4.4)
$\dfrac{1}{1 - \operatorname{sech} \ln 1.1}$
Paolo Pellegrini, 1/18
Martina Franca, Italy
222 (4.6)
$\log \left(1\%^{-111}\right)$
Paolo Pellegrini, 9/10
Martina Franca, Italy
223 (5.0)
$1 \times \coth \ln \cosh \operatorname{arccsch} \sqrt{111}$
Paolo Pellegrini, 9/14
Martina Franca, Italy
224 (4.4)
$\left( \sqrt{.\overline{1}} + .\overline{1}\right)\%^{-1} - 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
225 (2.6)
$\dfrac{1+1}{(1-.\overline{1})\%}$
Paolo Pellegrini, 8/09
Martina Franca, Italy
226 (4.4)
$\left( \sqrt{.\overline{1}} + .\overline{1}\right)\%^{-1} + 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
      230 (4.4)
$\dfrac{1.1 -\sqrt{.\overline{1}}}{\sqrt{.\overline{1}}\%}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
  231 (4.2)
$\dfrac{1+1 \pm}{\left( \sqrt{.\overline{1}} +.1\right)\%}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
232 (4.2)
$\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - 11$
Paolo Pellegrini, 9/10
Martina Franca, Italy
233 (4.4)
$\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - \dfrac{1}{.1}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
234 (4.6)
$\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - \dfrac{1}{.\overline{1}}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
        239 (4.6)
$\left(\left( \dfrac{1}{\sqrt{.\overline{1}}} \right)! \right)! \times \sqrt{.\overline{1}} - 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
240 (4.0)
$((1 + 1 + 1)!)! \times \sqrt{.\overline{1}}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
  241 (4.2)
$\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - 1 - 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
242 (4.2)
$\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} - 1 \times 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
243 (3.4)
$\sqrt[.1] {\sqrt{1+1+1}}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
244 (4.2)
$\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + 1 \times 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
245 (4.2)
$\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + 1 + 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
246 (4.8)
$\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + \dfrac{1}{\sqrt{.\overline{1}}}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
    249 (4.4)
$\dfrac{\sqrt{.\overline{1}}}{\left( 1+\sqrt{.\overline{1}} \right) \pmf} - 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
250 (3.6)
$(1 + 1) \pm ^{-1-1} \pm$
Paolo Pellegrini, 9/10
Martina Franca, Italy
  251 (4.4)
$\dfrac{ \sqrt{.\overline{1}}}{\left( 1+\sqrt{.\overline{1}} \right) \pmf} + 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
252 (4.6)
$\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + \dfrac{1}{.\overline{1}}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
253 (4.4)
$\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + \dfrac{1}{.1}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
254 (4.2)
$\sqrt{ \sqrt[-.1]{ \sqrt{.\overline{1}}}} + 11$
Paolo Pellegrini, 9/10
Martina Franca, Italy
        259 (4.8)
$\left( \sqrt{ \sqrt[-\sqrt{.\overline{1}}] {.\overline{1}\%}} \right)\% - 11$
Paolo Pellegrini, 9/10
Martina Franca, Italy
260 (4.6)
$\dfrac{ \sqrt{ \sqrt[-\sqrt{.\overline{1}}] {.\overline{1}}} -1}{.1}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
  261 (4.2)
$\dfrac{ \sqrt{\dfrac{1}{.\overline{1}\%}} -1}{.\overline{1}}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
    264 (4.6)
$11 \times (1 - \log(1 \pm))!$
Paolo Pellegrini, 9/10
Martina Franca, Italy
    267 (4.0)
$\dfrac{1-11\%}{\sqrt{.\overline{1}}\%}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
268 (4.8)
$\left( \sqrt{ \sqrt[-\sqrt{.\overline{1}}]{.\overline{1}\%}} \right)\% -1 -1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
269 (4.0)
$\dfrac{1-.1}{\sqrt{.\overline{1}}\%} - 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
270 (3.2)
$\dfrac{.1+.1+.1}{.\overline{1}\%}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
  271 (4.0)
$\dfrac{1-.1}{\sqrt{.\overline{1}}\%} + 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
272 (4.8)
$\left( \sqrt{ \sqrt[-\sqrt{.\overline{1}}]{.\overline{1}\%}} \right)\% + 1 + 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
273 (4.2)
$\dfrac{1-.1+1\%}{\sqrt{.\overline{1}}\%}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
  275 (4.6)
$\dfrac{11}{(1-\log(1 \pm))\%}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
276 (4.8)
$1 - \dfrac{11}{\log (.1 \% \pm)}$
Paolo Pellegrini, 1/18
Martina Franca, Italy
    279 (4.2)
$\dfrac{ \sqrt{ \dfrac{1}{.\overline{1}\%}} +1}{.\overline{1}}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
280 (3.4)
$\dfrac{.1+.1+.\overline{1}}{.\overline{1}\%}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
  281 (4.8)
$\left( \sqrt{ \sqrt[-\sqrt{.\overline{1}}]{.\overline{1}\%}} \right)\% + 11$
Paolo Pellegrini, 9/10
Martina Franca, Italy
282 (4.4)
$\dfrac{ \sqrt{.\overline{1}} -(1+1)\%}{.\overline{1}\%}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
        287 (4.8)
$\dfrac{1- \sqrt{.\overline{1}\%} -1\%}{\sqrt{.\overline{1}}\%}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
288 (3.8)
$\dfrac{ \sqrt[.1]{\sqrt{1+1}}}{.\overline{1}}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
289 (3.8)
$\dfrac{1}{\sqrt{.\overline{1}}\%} - 11$
Paolo Pellegrini, 9/10
Martina Franca, Italy
290 (3.6)
$\dfrac{.1 +.\overline{1} +.\overline{1}}{.\overline{1}\%}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
  291 (4.2)
$\dfrac{1}{\sqrt{.\overline{1}}\%} - \dfrac{1}{.\overline{1}}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
292 (4.4)
$\dfrac{\sqrt{.\overline{1}} -1\%}{.\overline{1}\%} + 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
293 (4.8)
$\dfrac{1+ \sqrt{.\overline{1}\%} + 1\%}{\sqrt{.\overline{1}}\%}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
294 (4.0)
$\dfrac{1 - (1+1)\%}{\sqrt{.\overline{1}}\%}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
295 (4.8)
$\log \left( 1 \pm ^{1 - 1/(1\%)} \% \right)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
296 (4.0)
$\dfrac{1-1\%}{\sqrt{.\overline{1}}\%} - 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
297 (3.8)
$\dfrac{ \dfrac{1}{1\%} -1}{\sqrt{.\overline{1}}}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
298 (3.8)
$\dfrac{1}{\sqrt{.\overline{1}}\%} - 1 - 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
299 (3.8)
$\dfrac{1}{\sqrt{.\overline{1}}\%} - 1 \times 1$
Steve Wilson, 9/10
Raytown, MO
300 (2.2)
$\dfrac{1+1+1}{1\%}$
Steve Wilson, 2/10
Raytown, MO
  301 (3.8)
$\dfrac{1}{\sqrt{.\overline{1}}\%} + 1 \times 1$
Steve Wilson, 9/10
Raytown, MO
302 (3.8)
$\dfrac{1}{\sqrt{.\overline{1}}\%} + 1 + 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
303 (3.8)
$\dfrac{ \dfrac{1}{1\%} + 1}{\sqrt{.\overline{1}}}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
304 (4.0)
$\dfrac{1+1\%}{\sqrt{.\overline{1}}\%} + 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
305 (4.8)
$1 + 1 - \log \left( \sqrt[1\%]{1 \pmf} \pm \right)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
306 (4.0)
$\dfrac{1+(1+1)\%}{\sqrt{.\overline{1}}\%}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
307 (4.8)
$\dfrac{1+\sqrt{.\overline{1}\%} -1\%}{\sqrt{.\overline{1}}\%}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
308 (4.4)
$\dfrac{\sqrt{.\overline{1}} +1\%}{.\overline{1}\%} - 1$
Paolo Pellegrini, 9/10
Martina Franca, Italy
309 (4.2)
$\dfrac{ \dfrac{\sqrt{.\overline{1}}}{1\%} +1}{.\overline{1}}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
310 (4.0)
$\dfrac{\sqrt{.1-1\%} +1\%}{1 \pmf}$
Paolo Pellegrini, 9/10
Martina Franca, Italy
  311 (3.8)
$\dfrac{1}{\sqrt{.\overline{1}}\%} + 11$
Paolo Pellegrini, 5/11
Martina Franca, Italy
312 (4.8)
$\left(\left( \sqrt{.\overline{1}} \right)! \right)! \times \left(\sqrt{.\overline{1}} + .1 \right)$
Paolo Pellegrini, 5/11
Martina Franca, Italy
313 (4.8)
$\dfrac{1+ \sqrt{.\overline{1}\%} +1\%}{\sqrt{.\overline{1}}\%}$
Steve Wilson, 9/10
Raytown, MO
314 (4.8)
$11 - \log \left( \sqrt[1\%]{1 \pmf} \pm \right)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
315 (5.6)
$(1 + \ln\sqrt{\exp (.1)}) \times \dfrac{\log(1\pm)}{-1\%}$
Steve Wilson, 7/23
Lawrence, KS
316 (5.6)
$(-\log(1\pm))!^{-\log(1\pm)} + \dfrac{1}{1\%}$
Steve Wilson, 7/23
Lawrence, KS
  318 (4.4)
$\dfrac{ \sqrt{.\overline{1}} +(1+1)\%}{.\overline{1}\%}$
Steve Wilson, 9/10
Raytown, MO
319 (4.8)
$\dfrac{ \sqrt[.1]{\sec \arctan 1}}{.1} - 1$
Paolo Pellegrini, 1/18
Martina Franca, Italy
320 (3.6)
$\dfrac{ \sqrt[.1]{\sqrt{1+1}}}{.1}$
Paolo Pellegrini, 5/11
Martina Franca, Italy
  321 (4.8)
$\dfrac{ \sqrt[.1]{\sec \arctan 1}}{.1} + 1$
Paolo Pellegrini, 1/18
Martina Franca, Italy
  323 (4.6)
$\dfrac{\sqrt{.\overline{1}} - 1\%}{1 \pmf} - \sqrt{.\overline{1}}$
Paolo Pellegrini, 5/11
Martina Franca, Italy
324 (4.8)
$\left( 1 + \sqrt{.\overline{1}} \right) \times \sqrt{ \sqrt[-.1]{\sqrt{.\overline{1}}}}$
Paolo Pellegrini, 5/11
Martina Franca, Italy
325 (4.6)
$\dfrac{\sqrt{.\overline{1}} + .1}{\left(1 + \sqrt{.\overline{1}}\right) \pmf}$
Paolo Pellegrini, 5/11
Martina Franca, Italy
  327 (4.0)
$\dfrac{1.1-1\%}{\sqrt{.\overline{1}}\%}$
Steve Wilson, 9/10
Raytown, MO
  329 (3.8)
$\dfrac{11}{\sqrt{.\overline{1}\%}} - 1$
Paolo Pellegrini, 5/11
Martina Franca, Italy
330 (3.8)
$\dfrac{11}{\sqrt{.\overline{11}\%}}$
Paolo Pellegrini, 5/11
Martina Franca, Italy
  331 (3.8)
$\dfrac{11}{\sqrt{.\overline{1}\%}} + 1$
Paolo Pellegrini, 5/11
Martina Franca, Italy
332 (4.4)
$\dfrac{\sqrt{.\overline{1}}}{1 \pmf} - 1 - \sqrt{.\overline{1}}$
Paolo Pellegrini, 5/11
Martina Franca, Italy
333 (3.6)
$\dfrac{111}{\sqrt{.\overline{1}}}$
Steve Wilson, 11/09
Raytown, MO
334 (4.4)
$\dfrac{\sqrt{.\overline{1}}}{1 \pmf} + 1 - \sqrt{.\overline{1}}$
Paolo Pellegrini, 5/11
Martina Franca, Italy
  336 (4.8)
$\dfrac{.\overline{1} + (1 - .\overline{1}) \pmf}{\sqrt{.\overline{1}} \pmf}$
Paolo Pellegrini, 5/11
Martina Franca, Italy
      340 (4.4)
$\dfrac{11 + \sqrt{.\overline{1}}}{\sqrt{.\overline{1}\%}}$
Paolo Pellegrini, 5/11
Martina Franca, Italy
    342 (5.4)
$(1 + (-\log(1\pm))!)^{-\log(1\pm)} - 1$
Steve Wilson, 7/23
Lawrence, KS
343 (4.4)
$\sqrt{\sqrt[-.1]{\sqrt{.\overline{1}}}} + \dfrac{1}{1\%}$
Paolo Pellegrini, 5/11
Martina Franca, Italy
344 (5.4)
$(1 + (-\log(1\pm))!)^{-\log(1\pm)} + 1$
Steve Wilson, 7/23
Lawrence, KS
          350 (4.6)
$\dfrac{\sqrt{.\overline{1}} - .1}{\left(1 - \sqrt{.\overline{1}}\right) \pmf}$
Paolo Pellegrini, 5/11
Martina Franca, Italy
    352 (4.6)
$\dfrac{11}{\sqrt[.1]{\cos \arctan 1}}$
Paolo Pellegrini, 1/18
Martina Franca, Italy
              360 (3.8)
$\dfrac{11 + 1}{\sqrt{.\overline{1}\%}}$
Paolo Pellegrini, 5/11
Martina Franca, Italy
  361 (4.8)
$\cosh \left( \dfrac{ \operatorname{arccsch} \sqrt{1+1}}{.1} \right) - 1$
Paolo Pellegrini, 1/18
Martina Franca, Italy
362 (4.8)
$\cosh \left( (11-1) \times \operatorname{arcsinh} \cos \arctan 1 \right)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
363 (4.8)
$\cosh \left( \dfrac{ \operatorname{arccsch} \sqrt{1+1}}{.1} \right) + 1$
Paolo Pellegrini, 1/18
Martina Franca, Italy
            370 (4.6)
$\dfrac{1 - .1 + \sqrt{.\overline{1}}}{\sqrt{.\overline{1}}\%}$
Paolo Pellegrini, 5/11
Martina Franca, Italy
    372 (5.6)
$\dfrac{\sqrt{.\overline{1}}}{(1 - .\overline{1}) \pmf} + \log(1\pm)$
Steve Wilson, 7/23
Lawrence, KS
373 (5.6)
$\dfrac{\sqrt{.\overline{1}}}{(1 - .\overline{1}) \pmf} + \log(1\%)$
Steve Wilson, 7/23
Lawrence, KS
374 (4.2)
$\dfrac{\sqrt{.\overline{1}}}{(1 - .\overline{1}) \pmf} - 1$
Paolo Pellegrini, 5/11
Martina Franca, Italy
375 (4.2)
$\dfrac{\sqrt{.\overline{11}}}{(1 - .\overline{1}) \pmf}$
Paolo Pellegrini, 5/11
Martina Franca, Italy
376 (4.2)
$\dfrac{\sqrt{.\overline{1}}}{(1 - .\overline{1}) \pmf} + 1$
Paolo Pellegrini, 5/11
Martina Franca, Italy
377 (5.6)
$\dfrac{\sqrt{.\overline{1}}}{(1 - .\overline{1}) \pmf} - \log(1\%)$
Steve Wilson, 7/23
Lawrence, KS
378 (5.6)
$\dfrac{\sqrt{.\overline{1}}}{(1 - .\overline{1}) \pmf} - \log(1\pm)$
Steve Wilson, 7/23
Lawrence, KS
   
  381 (4.6)
$\dfrac{ \sqrt{.\overline{1}} +.1-1\%}{.\overline{1}\%}$
Steve Wilson, 9/10
Raytown, MO
  383 (5.8)
$(\log(1\%))^{-\log(1\%\%\pm)} \times \log(1\pm) - 1$
Steve Wilson, 7/23
Lawrence, KS
384 (5.8)
$\dfrac{(\log(1\%))^{-\log(1\%\%\pm)} \times \log(1\pm)}{1}$
Steve Wilson, 7/23
Lawrence, KS
385 (5.8)
$(\log(1\%))^{-\log(1\%\%\pm)} \times \log(1\pm) + 1$
Steve Wilson, 7/23
Lawrence, KS
      389 (4.6)
$\dfrac{\sqrt{.\overline{1}} + .1}{\sqrt{.\overline{1}\%}} - 1$
Paolo Pellegrini, 5/11
Martina Franca, Italy
390 (4.6)
$\dfrac{\sqrt{.\overline{11}} + .1}{\sqrt{.\overline{1}\%}}$
Paolo Pellegrini, 5/11
Martina Franca, Italy
  391 (4.6)
$\dfrac{\sqrt{.\overline{1}} + .1}{\sqrt{.\overline{1}\%}} + 1$
Paolo Pellegrini, 5/11
Martina Franca, Italy
      395 (4.8)
$\dfrac{ \sinh \left( \ln \dfrac{1}{.1} \right) - 1}{1\%}$
Paolo Pellegrini, 1/18
Martina Franca, Italy
396 (4.8)
$\left( 1 - \dfrac{1}{1\%} \right) \times \log (1 \% \%)$
Paolo Pellegrini, 1/18
Martina Franca, Italy
397 (4.6)
$\dfrac{1 - 1\% + \sqrt{.\overline{1}}}{\sqrt{.\overline{1}} \%}$
Paolo Pellegrini, 1/18
Martina Franca, Italy
  399 (4.4)
$\dfrac{ \sqrt{.\overline{1}} +11\%}{.\overline{1}\%}$
Steve Wilson, 9/10
Raytown, MO
400 (3.4)
$\dfrac{1 - .\overline{1}}{(.\overline{1} + .\overline{1})\%}$
Paolo Pellegrini, 1/18
Martina Franca, Italy

Page 1 (1-400), Page 2 (401+).