\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator{\antilog}{antilog} \DeclareMathOperator{\arccot}{arccot} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\arsech}{arsech} \DeclareMathOperator{\arcsch}{arcsch} \)
This problem was proposed by Integermaniac master Paolo Pellegrini. Create each of the positive integers using four copies of 1, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.
Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.
PREVIOUS Page, Page 2 (401-10000), NEXT Page, ... Index to All Pages.
404 (5.0) $-\log(1\%\%)$ $\phantom8 \times \left(\dfrac{1}{1\%} + 1 \right)$ Steve Wilson, 7/23 Lawrence, KS |
||||||||||
447 (5.4) $\dfrac{1}{(.\overline{1} + .\overline{1})\%} + \log{(1 \pm)}$ Jonathan Frank, 3/21 Rye, NY |
448 (4.4) $\left( \dfrac{1}{.1} \right)! \times .\overline{1} \times .\overline{1}\%$ Jonathan Frank, 3/21 Rye, NY |
449 (3.0) $\dfrac{1}{(.\overline{1}+.\overline{1})\%} - 1$ Steve Wilson, 3/10 Raytown, MO |
450 (2.6) $\dfrac{1}{(1+1) \times .\overline{1}\%}$ Steve Wilson, 2/10 Raytown, MO |
|||||||
451 (3.0) $\dfrac{1}{(.\overline{1}+.\overline{1})\%} + 1$ Steve Wilson, 3/10 Raytown, MO |
452 (5.4) $\dfrac{1}{(.\overline{1} + .\overline{1})\%} - \log{(1 \%)}$ Jonathan Frank, 3/21 Rye, NY |
453 (5.4) $\dfrac{1}{(.\overline{1} + .\overline{1})\%} - \log{(1 \pm)}$ Jonathan Frank, 3/21 Rye, NY |
||||||||
495 (2.8) $\dfrac{1-1\%}{(.1+.1)\%}$ Steve Wilson, 3/10 Raytown, MO |
499 (2.6) $\dfrac{1}{(.1+.1)\%} - 1$ Steve Wilson, 4/10 Raytown, MO |
500 (2.4) $\dfrac{1}{(1+1) \times .1\%}$ Steve Wilson, 2/10 Raytown, MO |
||||||||
501 (2.6) $\dfrac{1}{(.1+.1)\%} + 1$ Steve Wilson, 4/10 Raytown, MO |
505 (2.8) $\dfrac{1+1\%}{(.1+.1)\%}$ Steve Wilson, 4/10 Raytown, MO |
|||||||||
511 (3.4) $\sqrt[.\overline{1}]{1 + 1} - 1$ Steve Wilson, 3/12 Raytown, MO |
512 (3.4) $\sqrt[.\overline{1}]{1 + 1} \times 1$ Steve Wilson, 3/12 Raytown, MO |
513 (3.4) $\sqrt[.\overline{1}]{1 + 1} + 1$ Steve Wilson, 3/12 Raytown, MO |
||||||||
540 (4.0) $\dfrac{(1 + 1 + 1)!\%}{.\overline{1} \pmf}$ Steve Wilson, 3/12 Raytown, MO |
||||||||||
550 (2.2) $\dfrac{11}{(1+1)\%}$ Steve Wilson, 2/10 Raytown, MO |
||||||||||
555 (4.8) $\ln \sqrt[.1]{\sqrt{\exp(111)}}$ Paolo Pellegrini, 9/14 Martina Franca, Italy |
||||||||||
600 (3.4) $\dfrac{(1 + 1 + 1)!}{1\%}$ Steve Wilson, 3/12 Raytown, MO |
||||||||||
719 (3.4) $((1 + 1 + 1)!)! - 1$ Steve Wilson, 3/12 Raytown, MO |
720 (3.0) $\dfrac{1-.1-.1}{.\overline{1}\%}$ Steve Wilson, 4/10 Raytown, MO |
|||||||||
721 (3.4) $((1 + 1 + 1)!)! + 1$ Steve Wilson, 3/12 Raytown, MO |
729 (3.2) $\dfrac{1}{.\overline{1} \times .\overline{1} \times .\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
|||||||||
768 (5.6) $\dfrac{(1 + 1)^{-\log(1\%\pm\pm)\phantom{88}}}{\sqrt{.\overline{1}}}$ Steve Wilson, 7/23 Lawrence, KS |
||||||||||
799 (3.0) $\dfrac{1-.\overline{1}}{.\overline{1}\%} - 1$ Steve Wilson, 4/10 Raytown, MO |
800 (2.6) $\dfrac{ \dfrac{1}{.\overline{1}} -1}{1\%}$ Steve Wilson, 2/10 Raytown, MO |
|||||||||
801 (2.8) $\dfrac{1-.11}{.\overline{1}\%}$ Steve Wilson, 5/10 Raytown, MO |
809 (2.8) $\dfrac{1-.1}{.\overline{1}\%} - 1$ Steve Wilson, 5/10 Raytown, MO |
810 (2.8) $\dfrac{1-.1}{.\overline{1}\%} \times 1$ Steve Wilson, 5/10 Raytown, MO |
||||||||
811 (2.8) $\dfrac{1-.1}{.\overline{1}\%} + 1$ Steve Wilson, 5/10 Raytown, MO |
819 (3.0) $\dfrac{1-.1+1\%}{.\overline{1}\%}$ Steve Wilson, 5/10 Raytown, MO |
|||||||||
845 (5.6) $\dfrac{1 - (-\log(1\pm))!\%}{.\overline{1}\%} - 1$ Steve Wilson, 7/23 Lawrence, KS |
846 (5.6) $\dfrac{1 - (-\log(1\pm))!\%}{.\overline{11}\%}$ Steve Wilson, 7/23 Lawrence, KS |
847 (5.6) $\dfrac{1 - (-\log(1\pm))!\%}{.\overline{1}\%} + 1$ Steve Wilson, 7/23 Lawrence, KS |
||||||||
882 (2.8) $\dfrac{1-(1+1)\%}{.\overline{1}\%}$ Steve Wilson, 6/10 Raytown, MO |
889 (2.6) $\dfrac{1}{.\overline{1}\%} - 11$ Steve Wilson, 6/10 Raytown, MO |
890 (2.6) $\dfrac{1-.11}{.1\%}$ Steve Wilson, 6/10 Raytown, MO |
||||||||
891 (2.6) $\dfrac{ \dfrac{1}{1\%} -1}{.\overline{1}}$ Steve Wilson, 6/10 Raytown, MO |
892 (2.8) $\dfrac{1-1\%}{.\overline{1}\%} + 1$ Steve Wilson, 6/10 Raytown, MO |
898 (2.6) $\dfrac{1}{.\overline{1}\%} - 1 - 1$ Steve Wilson, 5/11 Raytown, MO |
899 (2.6) $\dfrac{1}{.\overline{1}\%} - 1 \times 1$ Steve Wilson, 5/11 Raytown, MO |
900 (2.4) $\dfrac{\dfrac{1}{.1} - 1}{1\%}$ Steve Wilson, 5/11 Raytown, MO |
||||||
901 (2.6) $\dfrac{1}{.\overline{1}\%} + 1 \times 1$ Steve Wilson, 5/11 Raytown, MO |
902 (2.6) $\dfrac{1}{.\overline{1}\%} + 1 + 1$ Steve Wilson, 5/11 Raytown, MO |
908 (2.8) $\dfrac{1 + 1\%}{.\overline{1}\%} - 1$ Steve Wilson, 5/11 Raytown, MO |
909 (2.6) $\dfrac{\dfrac{1}{1\%} + 1}{.\overline{1}}$ Steve Wilson, 5/11 Raytown, MO |
910 (2.8) $\dfrac{1 + 1\%}{.\overline{1}\%} + 1$ Steve Wilson, 5/11 Raytown, MO |
||||||
911 (2.6) $\dfrac{1}{.\overline{1}\%} + 11$ Steve Wilson, 5/11 Raytown, MO |
918 (2.8) $\dfrac{1 + (1+1)\%}{.\overline{1}\%}$ Steve Wilson, 5/11 Raytown, MO |
|||||||||
934 (5.6) $\left( \dfrac{1}{.\overline{1}} \right)!! - 11$ Jonathan Frank, 3/21 Rye, NY |
935 (5.4) $\dfrac{1 - (\log(1\%\%))\%}{.\overline{1}\%} - 1$ Steve Wilson, 7/23 Lawrence, KS |
936 (5.4) $\dfrac{1 - (\log(1\%\%))\%}{.\overline{11}\%}$ Steve Wilson, 7/23 Lawrence, KS |
937 (5.4) $\dfrac{1 - (\log(1\%\%))\%}{.\overline{1}\%} + 1$ Steve Wilson, 7/23 Lawrence, KS |
|||||||
942 (5.8) $\dfrac{1 + \ln\sqrt{\exp (.1)}}{.\overline{1}\%}$ $\phantom8 + \log(1\pm)$ Steve Wilson, 7/23 Lawrence, KS |
943 (5.8) $\dfrac{1 + \ln\sqrt{\exp (.1)}}{.\overline{1}\%} + \log(1\%)$ Steve Wilson, 7/23 Lawrence, KS |
944 (5.4) $\dfrac{1 + \ln\sqrt{\exp (.1)}}{.\overline{1}\%} - 1$ Steve Wilson, 7/23 Lawrence, KS |
945 (5.4) $\dfrac{1 + \ln\sqrt{\exp (.1)}}{.\overline{11}\%}$ Steve Wilson, 7/23 Lawrence, KS |
946 (5.4) $\dfrac{1 + \ln\sqrt{\exp (.1)}}{.\overline{1}\%} + 1$ Steve Wilson, 7/23 Lawrence, KS |
947 (5.8) $\dfrac{1 + \ln\sqrt{\exp (.1)}}{.\overline{1}\%}$ $\phantom8 - \log(1\%)$ Steve Wilson, 7/23 Lawrence, KS |
948 (5.8) $\dfrac{1 + \ln\sqrt{\exp (.1)}}{.\overline{1}\%}$ $\phantom8 - \log(1\pm)$ Steve Wilson, 7/23 Lawrence, KS |
||||
953 (5.6) $\dfrac{1 + (-\log(1\pm))!\%\phantom8}{.\overline{1}\%} - 1$ Steve Wilson, 7/23 Lawrence, KS |
954 (5.6) $\dfrac{1 + (-\log(1\pm))!\%\phantom8}{.\overline{11}\%}$ Steve Wilson, 7/23 Lawrence, KS |
955 (5.6) $\dfrac{1 + (-\log(1\pm))!\%\phantom8}{.\overline{1}\%} + 1$ Steve Wilson, 7/23 Lawrence, KS |
956 (5.6) $\left( \dfrac{1}{.\overline{1}} \right)!! + 11$ Jonathan Frank, 3/21 Rye, NY |
|||||||
980 (2.6) $\dfrac{1 - (1+1)\%}{.1\%}$ Steve Wilson, 5/11 Raytown, MO |
||||||||||
981 (2.8) $\dfrac{1.1 - 1\%}{.\overline{1}\%}$ Steve Wilson, 5/11 Raytown, MO |
988 (4.6) $\sinh \arcsch (1 \pm) - 11 - 1$ Paolo Pellegrini, 8/10 Martina Franca, Italy |
989 (2.4) $\dfrac{1}{.1\%} - 11$ Steve Wilson, 12/09 Raytown, MO |
990 (2.4) $\dfrac{\dfrac{1}{1\%} - 1}{.1}$ Steve Wilson, 5/11 Raytown, MO |
|||||||
991 (2.6) $\dfrac{1-1\%}{.1\%} + 1$ Paolo Pellegrini, 8/09 Martina Franca, Italy |
998 (2.4) $\dfrac{1}{.1\%} - 1 - 1$ Paolo Pellegrini, 8/09 Martina Franca, Italy |
999 (2.4) $\dfrac{1}{.1\%} \times 1 - 1$ Paolo Pellegrini, 8/09 Martina Franca, Italy |
1000 (2.2) $\dfrac{11}{1.1\%}$ Lisa Fisher, 7/09 Lawrence, KS |
|||||||
1001 (2.4) $\dfrac{1}{.1\%} + 1 \times 1$ Steve Wilson, 12/09 Raytown, MO |
1002 (2.4) $\dfrac{1}{.1\%} + 1 + 1$ Steve Wilson, 12/09 Raytown, MO |
1009 (2.6) $\dfrac{1+1\%}{.1\%} - 1$ Steve Wilson, 12/09 Raytown, MO |
1010 (2.4) $\dfrac{\dfrac{1}{1\%} + 1}{.1}$ Steve Wilson, 5/11 Raytown, MO |
|||||||
1011 (2.4) $\dfrac{1}{.1\%} + 11$ Steve Wilson, 12/09 Raytown, MO |
1012 (4.6) $\sinh \arcsch (1 \pm) + 11 + 1$ Paolo Pellegrini, 8/10 Martina Franca, Italy |
1020 (2.6) $\dfrac{1 + (1+1)\%}{.1\%}$ Steve Wilson, 5/11 Raytown, MO |
||||||||
1024 (3.2) $(1 + 1)^{1/.1}$ Steve Wilson, 7/23 Lawrence, KS |
||||||||||
1045 (5.8) $\dfrac{.\overline{1} + \ln\sqrt{\exp(1\%)}}{.\overline{11}\pmf}$ Steve Wilson, 7/23 Lawrence, KS |
||||||||||
1080 (2.8) $\dfrac{1.1 + .1}{.\overline{1}\%}$ Steve Wilson, 5/11 Raytown, MO |
||||||||||
1090 (2.4) $\dfrac{11 - .1}{1\%}$ Steve Wilson, 5/11 Raytown, MO |
||||||||||
1099 (2.2) $\dfrac{11}{1\%} - 1$ Jordan Cordry, 1/10 Overland Park, KS |
1100 (2.2) $\dfrac{11}{1\%} \times 1$ Jordan Cordry, 1/10 Overland Park, KS |
|||||||||
1101 (2.2) $\dfrac{11}{1\%} + 1$ Jordan Cordry, 1/10 Overland Park, KS |
1110 (2.2) $\dfrac{111}{.1}$ Steve Wilson, 11/09 Raytown, MO |
|||||||||
1111 (2.0) $1111$ Steve Wilson, 11/09 Raytown, MO |
||||||||||
1124 (3.0) $\dfrac{.1}{(1-.\overline{1})\%\%} - 1$ Steve Wilson, 10/11 Raytown, MO |
1125 (2.8) $\dfrac{1}{(1-.\overline{1}) \times .1\%}$ Steve Wilson, 10/11 Raytown, MO |
1126 (3.0) $\dfrac{.1}{(1-.\overline{1})\%\%} + 1$ Steve Wilson, 10/11 Raytown, MO |
||||||||
1154 (5.6) $11!! \times .\overline{1} - 1$ Jonathan Frank, 3/21 Rye, NY |
1155 (5.6) $11!! \times .\overline{1} \times 1$ Jonathan Frank, 3/21 Rye, NY |
1156 (5.6) $11!! \times .\overline{1} + 1$ Jonathan Frank, 3/21 Rye, NY |
||||||||
1200 (2.2) $\dfrac{11 + 1}{1\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1250 (2.6) $\dfrac{1}{(.1 - (1 + 1)\%)\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1277 (6.4) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{.\overline{1}}$ $\phantom8 + \log{(1 \pm)}$ Jonathan Frank, 3/21 Rye, NY |
1278 (6.4) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{.\overline{1}}$ $\phantom8 + \log{(1 \%)}$ Jonathan Frank, 3/21 Rye, NY |
1279 (5.8) $\dfrac{(-\log(1\%))^{-\log(1\%\%\pm)\phantom8}}{.1}$ $\phantom8 - 1$ Steve Wilson, 7/23 Lawrence, KS |
1280 (5.2) $\dfrac{(1 + 1)^{-\log(1\%\%\pm)\phantom8}}{.1}$ Steve Wilson, 7/23 Lawrence, KS |
|||||||
1281 (5.8) $\dfrac{(-\log(1\%))^{-\log(1\%\%\pm)\phantom8}}{.1}$ $\phantom8 + 1$ Steve Wilson, 7/23 Lawrence, KS |
1282 (6.4) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{.\overline{1}}$ $\phantom8 - \log(1\%)$ Jonathan Frank, 3/21 Rye, NY |
1283 (6.4) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{.\overline{1}} - \log (1\pm)$ Jonathan Frank, 3/21 Rye, NY |
||||||||
1393 (4.6) $\sinh \left( \left( \dfrac{1}{.1}-1 \right) \times \arcsch 1 \right)$ Paolo Pellegrini, 8/10 Martina Franca, Italy |
||||||||||
1700 (3.0) $\dfrac{1 + 1 - .\overline{1}}{.\overline{1}\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1710 (2.8) $\dfrac{1 + 1 - .1}{.\overline{1}\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1791 (2.8) $\dfrac{1 + 1 - 1\%}{.\overline{1}\%}$ Steve Wilson, 10/11 Raytown, MO |
1799 (2.6) $\dfrac{1 + 1}{.\overline{1}\%} - 1$ Steve Wilson, 10/11 Raytown, MO |
1800 (2.6) $\dfrac{1 + 1}{.\overline{1} \times 1\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||
1801 (2.6) $\dfrac{1 + 1}{.\overline{1}\%} + 1$ Steve Wilson, 10/11 Raytown, MO |
1809 (2.8) $\dfrac{1 + 1 + 1\%}{.\overline{1}\%}$ Steve Wilson, 10/11 Raytown, MO |
|||||||||
1890 (2.6) $\dfrac{1.1 + 1}{.\overline{1}\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1900 (2.6) $\dfrac{1 + 1 - .1}{.1\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1943 (5.8) $\dfrac{(-\log(1\pm)!)^{-\log(1\pm)\phantom8}\phantom8}{.\overline{1}} - 1$ Steve Wilson, 7/23 Lawrence, KS |
1944 (5.8) $\dfrac{(-\log(1\pm)!)^{-\log(1\pm)\phantom8}\phantom8}{.\overline{11}}$ Steve Wilson, 7/23 Lawrence, KS |
1945 (5.8) $\dfrac{(-\log(1\pm)!)^{-\log(1\pm)\phantom8}\phantom8}{.\overline{1}} + 1$ Steve Wilson, 7/23 Lawrence, KS |
||||||||
1990 (2.6) $\dfrac{1 + 1 - 1\%}{.1\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1999 (2.4) $\dfrac{1 + 1}{.1\%} - 1$ Steve Wilson, 10/11 Raytown, MO |
2000 (2.4) $\dfrac{1 + 1}{.1\%} \times 1$ Steve Wilson, 10/11 Raytown, MO |
|||||||||
2001 (2.4) $\dfrac{1 + 1}{.1\%} + 1$ Steve Wilson, 10/11 Raytown, MO |
2010 (2.6) $\dfrac{1 + 1 + 1\%}{.1\%}$ Steve Wilson, 10/11 Raytown, MO |
|||||||||
2045 (5.0) $(-\log{(1\%)})^{11} + \log{(1 \pm)}$ Jonathan Frank, 3/21 Rye, NY |
2046 (5.0) $(-\log{(1\%)})^{11} + \log{(1 \%)}$ Jonathan Frank, 3/21 Rye, NY |
2047 (4.6) $(-\log{(1\%)})^{11} - 1$ Jonathan Frank, 3/21 Rye, NY |
2048 (3.0) $(1 + 1)^{11}$ Kashmira Sayani, 3/17 Overland Park, KS |
2049 (4.6) $(-\log{(1\%)})^{11} + 1$ Jonathan Frank, 3/21 Rye, NY |
2050 (5.0) $(-\log{(1\%)})^{11} - \log{(1 \%)}$ Jonathan Frank, 3/21 Rye, NY |
|||||
2051 (5.0) $(-\log{(1\%)})^{11} - \log{(1 \pm)}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
2079 (5.6) $11!! \times (.1 + .1)$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
2100 (2.4) $\dfrac{1.1 + 1}{.1\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
2310 (6.0) $11!! \times (.\overline{1} + .\overline{1})$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
2700 (2.6) $\dfrac{1 + 1 + 1}{.\overline{1}\%}$ Steve Wilson, 11/11 Raytown, MO |
||||||||||
2835 (6.2) $\left( \dfrac{1}{.\overline{1}} \right)!! \times \sqrt{ \dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21 Rye, NY |
2840 (5.6) $\left( \dfrac{1}{.1} \right)!! - \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
|||||||||
3000 (2.4) $\dfrac{1 + 1 + 1}{.1\%}$ Steve Wilson, 11/11 Raytown, MO |
||||||||||
3464 (5.8) $11!! \times \sqrt{.\overline{1}} - 1$ Jonathan Frank, 3/21 Rye, NY |
3465 (5.8) $11!! \times \sqrt{.\overline{1}} \times 1$ Jonathan Frank, 3/21 Rye, NY |
3466 (5.8) $11!! \times \sqrt{.\overline{1}} + 1$ Jonathan Frank, 3/21 Rye, NY |
||||||||
3740 (5.6) $\left( \dfrac{1}{.1} \right)!! - \dfrac{1}{1\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
3829 (5.4) $\left( \dfrac{1}{.1} \right)!! - 11$ Jonathan Frank, 3/21 Rye, NY |
3830 (5.6) $\left( \dfrac{1}{.1} \right)!! - \dfrac{1}{.1}$ Jonathan Frank, 3/21 Rye, NY |
|||||||||
3831 (5.8) $\left( \dfrac{1}{.1} \right)!! - \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
3837 (6.0) $\left( \dfrac{1}{.1} \right)!! - \sqrt{\dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21 Rye, NY |
3838 (5.4) $\left( \dfrac{1}{.1} \right)!! - 1 - 1$ Jonathan Frank, 3/21 Rye, NY |
3839 (5.2) $(11 - 1)!! - 1$ Jonathan Frank, 3/21 Rye, NY |
3840 (5.2) $(11 - 1)!! \times 1$ Jonathan Frank, 3/21 Rye, NY |
||||||
3841 (5.2) $(11 - 1)!! + 1$ Jonathan Frank, 3/21 Rye, NY |
3842 (5.4) $\left( \dfrac{1}{.1} \right)!! + 1 + 1$ Jonathan Frank, 3/21 Rye, NY |
3843 (6.0) $\left( \dfrac{1}{.1} \right)!! + \sqrt{\dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21 Rye, NY |
3849 (5.8) $\left( \dfrac{1}{.1} \right)!! + \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
3850 (5.6) $\left( \dfrac{1}{.1} \right)!! + \dfrac{1}{.1}$ Jonathan Frank, 3/21 Rye, NY |
||||||
3851 (5.4) $\left( \dfrac{1}{.1} \right)!! + 11$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
3940 (5.4) $\left( \dfrac{1}{.1} \right)!! + \dfrac{1}{1\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
4032 (4.0) $\left( \dfrac{1}{.1} \right)! \times .\overline{1} \times 1\%$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
4096 (4.6) $(-\log{(1\%)})^{11+1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
4224 (5.4) $\left( \dfrac{1}{.1} \right)!! \times 1.1$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
4480 (4.4) $\left( \dfrac{1}{.\overline{1}} \right)! \times .\overline{1} \times .\overline{1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
4500 (2.6) $\dfrac{1 - .1}{(1 + 1)\%\%}$ Steve Wilson, 11/11 Raytown, MO |
||||||||||
4840 (5.4) $\left( \dfrac{1}{.1} \right)!! + \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
4928 (6.2) $11!! \times .\overline{1} \times .\overline{1}\%$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
4950 (2.6) $\dfrac{1 - 1\%}{(1 + 1)\%\%}$ Steve Wilson, 11/11 Raytown, MO |
||||||||||
4995 (2.8) $\dfrac{1 - .1\%}{(1 + 1)\%\%}$ Steve Wilson, 11/11 Raytown, MO |
4999 (2.4) $\dfrac{1}{(1 + 1)\%\%} - 1$ Steve Wilson, 11/11 Raytown, MO |
5000 (2.4) $\dfrac{1}{(1 + 1)\%\%} \times 1$ Steve Wilson, 11/11 Raytown, MO |
||||||||
5001 (2.4) $\dfrac{1}{(1 + 1)\%\%} + 1$ Steve Wilson, 11/11 Raytown, MO |
5005 (2.8) $\dfrac{1 + .1\%}{(1 + 1)\%\%}$ Steve Wilson, 11/11 Raytown, MO |
|||||||||
5050 (2.6) $\dfrac{1 + 1\%}{(1 + 1)\%\%}$ Steve Wilson, 11/11 Raytown, MO |
||||||||||
5400 (3.8) $\dfrac{(1 + 1 + 1)!}{.\overline{1}\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
5500 (2.4) $\dfrac{1.1}{(1 + 1)\%\%}$ Steve Wilson, 11/11 Raytown, MO |
||||||||||
6000 (3.4) $\dfrac{(1 + 1 + 1)!}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
6480 (3.8) $\dfrac{((1 + 1 + 1)!)!}{.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
6561 (5.0) $(-\log{(1 \pm)})^{11 + \log{(1 \pm)}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
7200 (3.0) $\dfrac{ \dfrac{1}{.\overline{1}} - 1}{.\overline{1}\%}$ Steve Wilson, 8/13 Raytown, MO |
||||||||||
7680 (5.4) $\left( \dfrac{1}{.1} \right)!! \times (1 + 1)$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
8000 (2.8) $\dfrac{1 - .1 - .1}{1\%\%}$ Steve Wilson, 8/13 Raytown, MO |
||||||||||
8091 (3.0) $\dfrac{ \dfrac{1}{.\overline{1}\%} - 1}{.\overline{1}}$ Steve Wilson, 8/13 Raytown, MO |
8099 (3.0) $\dfrac{1}{.\overline{1} \times .\overline{1}\%} - 1$ Steve Wilson, 8/13 Raytown, MO |
8100 (2.8) $\dfrac{ \dfrac{1}{.1} - 1}{.\overline{1}\%}$ Steve Wilson, 8/13 Raytown, MO |
||||||||
8101 (3.0) $\dfrac{1}{.\overline{1} \times .\overline{1}\%} + 1$ Steve Wilson, 8/13 Raytown, MO |
8109 (3.0) $\dfrac{ \dfrac{1}{.\overline{1}\%} + 1}{.\overline{1}}$ Steve Wilson, 8/13 Raytown, MO |
|||||||||
8192 (5.0) $(-\log{(1\%)})^{11-\log{(1\%)}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
8505 (6.0) $\left( \dfrac{1}{.\overline{1}} \right)!! \times \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
9000 (3.6) $\dfrac{1}{1\%\%} - \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
9011 (3.6) $\dfrac{1}{.\overline{1} \pmf} + 11$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
9395 (5.4) $11!! - \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
9450 (5.8) $\left( \dfrac{1}{.\overline{1}} \right)!! \times \dfrac{1}{.1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
9801 (4.6) $( 1-\sinh \arcsch (1\%))^{1+1}$ Paolo Pellegrini, 8/10 Martina Franca, Italy |
||||||||||
9900 (2.6) $\dfrac{1}{1\%\%} - \dfrac{1}{1\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
9989 (2.4) $\dfrac{1}{1\%\%} - 11$ Jonathan Frank, 3/21 Rye, NY |
9990 (2.6) $\dfrac{1}{1\%\%} - \dfrac{1}{.1}$ Jonathan Frank, 3/21 Rye, NY |
|||||||||
9998 (2.4) $\dfrac{1}{1\%\%} - 1 - 1$ Jonathan Frank, 3/21 Rye, NY |
9999 (2.4) $\dfrac{1}{1\%\%} - 1 \times 1$ Jonathan Frank, 3/21 Rye, NY |
10000 (2.4) $\dfrac{1}{1\%\%} + 1 - 1$ Jonathan Frank, 3/21 Rye, NY |
PREVIOUS Page, Page 2 (401-10000), NEXT Page, ... Index to All Pages.