\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \)
This problem was proposed by Integermaniac master Paolo Pellegrini. Create each of the positive integers using four copies of 1, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.
Use the online submissions page to get your Integermania solutions posted here! Five "new" or "improved" solutions per person per month are accepted.
Page 1 (1-400), Page 2 (401+).
404 (5.0) $-\log(1\%\%) \times \left(\dfrac{1}{1\%} + 1 \right)$ Steve Wilson, 7/23 Lawrence, KS |
||||||||||
447 (5.4) $\dfrac{1}{(.\overline{1} + .\overline{1})\%} + \log{(1 \pm)}$ Jonathan Frank, 3/21 Rye, NY |
448 (4.4) $\left( \dfrac{1}{.1} \right)! \times .\overline{1} \times .\overline{1}\%$ Jonathan Frank, 3/21 Rye, NY |
449 (3.0) $\dfrac{1}{(.\overline{1}+.\overline{1})\%} - 1$ Steve Wilson, 3/10 Raytown, MO |
450 (2.6) $\dfrac{1}{(1+1) \times .\overline{1}\%}$ Steve Wilson, 2/10 Raytown, MO |
|||||||
451 (3.0) $\dfrac{1}{(.\overline{1}+.\overline{1})\%} + 1$ Steve Wilson, 3/10 Raytown, MO |
452 (5.4) $\dfrac{1}{(.\overline{1} + .\overline{1})\%} - \log{(1 \%)}$ Jonathan Frank, 3/21 Rye, NY |
453 (5.4) $\dfrac{1}{(.\overline{1} + .\overline{1})\%} - \log{(1 \pm)}$ Jonathan Frank, 3/21 Rye, NY |
||||||||
495 (2.8) $\dfrac{1-1\%}{(.1+.1)\%}$ Steve Wilson, 3/10 Raytown, MO |
499 (2.6) $\dfrac{1}{(.1+.1)\%} - 1$ Steve Wilson, 4/10 Raytown, MO |
500 (2.4) $\dfrac{1}{(1+1) \times .1\%}$ Steve Wilson, 2/10 Raytown, MO |
||||||||
501 (2.6) $\dfrac{1}{(.1+.1)\%} + 1$ Steve Wilson, 4/10 Raytown, MO |
505 (2.8) $\dfrac{1+1\%}{(.1+.1)\%}$ Steve Wilson, 4/10 Raytown, MO |
|||||||||
511 (3.4) $\sqrt[.\overline{1}]{1 + 1} - 1$ Steve Wilson, 3/12 Raytown, MO |
512 (3.4) $\sqrt[.\overline{1}]{1 + 1} \times 1$ Steve Wilson, 3/12 Raytown, MO |
513 (3.4) $\sqrt[.\overline{1}]{1 + 1} + 1$ Steve Wilson, 3/12 Raytown, MO |
||||||||
540 (4.0) $\dfrac{(1 + 1 + 1)!\%}{.\overline{1} \pmf}$ Steve Wilson, 3/12 Raytown, MO |
||||||||||
550 (2.2) $\dfrac{11}{(1+1)\%}$ Steve Wilson, 2/10 Raytown, MO |
||||||||||
555 (4.8) $\ln \sqrt[.1]{\sqrt{\exp(111)}}$ Paolo Pellegrini, 9/14 Martina Franca, Italy |
||||||||||
600 (3.4) $\dfrac{(1 + 1 + 1)!}{1\%}$ Steve Wilson, 3/12 Raytown, MO |
||||||||||
719 (3.4) $((1 + 1 + 1)!)! - 1$ Steve Wilson, 3/12 Raytown, MO |
720 (3.0) $\dfrac{1-.1-.1}{.\overline{1}\%}$ Steve Wilson, 4/10 Raytown, MO |
|||||||||
721 (3.4) $((1 + 1 + 1)!)! + 1$ Steve Wilson, 3/12 Raytown, MO |
729 (3.2) $\dfrac{1}{.\overline{1} \times .\overline{1} \times .\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
|||||||||
768 (5.6) $\dfrac{(1 + 1)^{-\log(1\%\pm\pm)}}{\sqrt{.\overline{1}}}$ Steve Wilson, 7/23 Lawrence, KS |
||||||||||
799 (3.0) $\dfrac{1-.\overline{1}}{.\overline{1}\%} - 1$ Steve Wilson, 4/10 Raytown, MO |
800 (2.6) $\dfrac{ \dfrac{1}{.\overline{1}} -1}{1\%}$ Steve Wilson, 2/10 Raytown, MO |
|||||||||
801 (2.8) $\dfrac{1-.11}{.\overline{1}\%}$ Steve Wilson, 5/10 Raytown, MO |
809 (2.8) $\dfrac{1-.1}{.\overline{1}\%} - 1$ Steve Wilson, 5/10 Raytown, MO |
810 (2.8) $\dfrac{1-.1}{.\overline{1}\%} \times 1$ Steve Wilson, 5/10 Raytown, MO |
||||||||
811 (2.8) $\dfrac{1-.1}{.\overline{1}\%} + 1$ Steve Wilson, 5/10 Raytown, MO |
819 (3.0) $\dfrac{1-.1+1\%}{.\overline{1}\%}$ Steve Wilson, 5/10 Raytown, MO |
|||||||||
845 (5.6) $\dfrac{1 - (-\log(1\pm))!\%}{.\overline{1}\%} - 1$ Steve Wilson, 7/23 Lawrence, KS |
846 (5.6) $\dfrac{1 - (-\log(1\pm))!\%}{.\overline{11}\%}$ Steve Wilson, 7/23 Lawrence, KS |
847 (5.6) $\dfrac{1 - (-\log(1\pm))!\%}{.\overline{1}\%} + 1$ Steve Wilson, 7/23 Lawrence, KS |
||||||||
882 (2.8) $\dfrac{1-(1+1)\%}{.\overline{1}\%}$ Steve Wilson, 6/10 Raytown, MO |
889 (2.6) $\dfrac{1}{.\overline{1}\%} - 11$ Steve Wilson, 6/10 Raytown, MO |
890 (2.6) $\dfrac{1-.11}{.1\%}$ Steve Wilson, 6/10 Raytown, MO |
||||||||
891 (2.6) $\dfrac{ \dfrac{1}{1\%} -1}{.\overline{1}}$ Steve Wilson, 6/10 Raytown, MO |
892 (2.8) $\dfrac{1-1\%}{.\overline{1}\%} + 1$ Steve Wilson, 6/10 Raytown, MO |
898 (2.6) $\dfrac{1}{.\overline{1}\%} - 1 - 1$ Steve Wilson, 5/11 Raytown, MO |
899 (2.6) $\dfrac{1}{.\overline{1}\%} - 1 \times 1$ Steve Wilson, 5/11 Raytown, MO |
900 (2.4) $\dfrac{\dfrac{1}{.1} - 1}{1\%}$ Steve Wilson, 5/11 Raytown, MO |
||||||
901 (2.6) $\dfrac{1}{.\overline{1}\%} + 1 \times 1$ Steve Wilson, 5/11 Raytown, MO |
902 (2.6) $\dfrac{1}{.\overline{1}\%} + 1 + 1$ Steve Wilson, 5/11 Raytown, MO |
908 (2.8) $\dfrac{1 + 1\%}{.\overline{1}\%} - 1$ Steve Wilson, 5/11 Raytown, MO |
909 (2.6) $\dfrac{\dfrac{1}{1\%} + 1}{.\overline{1}}$ Steve Wilson, 5/11 Raytown, MO |
910 (2.8) $\dfrac{1 + 1\%}{.\overline{1}\%} + 1$ Steve Wilson, 5/11 Raytown, MO |
||||||
911 (2.6) $\dfrac{1}{.\overline{1}\%} + 11$ Steve Wilson, 5/11 Raytown, MO |
918 (2.8) $\dfrac{1 + (1+1)\%}{.\overline{1}\%}$ Steve Wilson, 5/11 Raytown, MO |
|||||||||
934 (7.6) $\left( \dfrac{1}{.\overline{1}} \right)!! - 11$ Jonathan Frank, 3/21 Rye, NY |
935 (5.4) $\dfrac{1 - (\log(1\%\%))\%}{.\overline{1}\%} - 1$ Steve Wilson, 7/23 Lawrence, KS |
936 (5.4) $\dfrac{1 - (\log(1\%\%))\%}{.\overline{11}\%}$ Steve Wilson, 7/23 Lawrence, KS |
937 (5.4) $\dfrac{1 - (\log(1\%\%))\%}{.\overline{1}\%} + 1$ Steve Wilson, 7/23 Lawrence, KS |
|||||||
942 (5.8) $\dfrac{1 + \ln\sqrt{\exp (.1)}}{.\overline{1}\%} + \log(1\pm)$ Steve Wilson, 7/23 Lawrence, KS |
943 (5.8) $\dfrac{1 + \ln\sqrt{\exp (.1)}}{.\overline{1}\%} + \log(1\%)$ Steve Wilson, 7/23 Lawrence, KS |
944 (5.4) $\dfrac{1 + \ln\sqrt{\exp (.1)}}{.\overline{1}\%} - 1$ Steve Wilson, 7/23 Lawrence, KS |
945 (5.4) $\dfrac{1 + \ln\sqrt{\exp (.1)}}{.\overline{11}\%}$ Steve Wilson, 7/23 Lawrence, KS |
946 (5.4) $\dfrac{1 + \ln\sqrt{\exp (.1)}}{.\overline{1}\%} + 1$ Steve Wilson, 7/23 Lawrence, KS |
947 (5.8) $\dfrac{1 + \ln\sqrt{\exp (.1)}}{.\overline{1}\%} - \log(1\%)$ Steve Wilson, 7/23 Lawrence, KS |
948 (5.8) $\dfrac{1 + \ln\sqrt{\exp (.1)}}{.\overline{1}\%} - \log(1\pm)$ Steve Wilson, 7/23 Lawrence, KS |
||||
953 (5.6) $\dfrac{1 + (-\log(1\pm))!\%}{.\overline{1}\%} - 1$ Steve Wilson, 7/23 Lawrence, KS |
954 (5.6) $\dfrac{1 + (-\log(1\pm))!\%}{.\overline{11}\%}$ Steve Wilson, 7/23 Lawrence, KS |
955 (5.6) $\dfrac{1 + (-\log(1\pm))!\%}{.\overline{1}\%} + 1$ Steve Wilson, 7/23 Lawrence, KS |
956 (7.6) $\left( \dfrac{1}{.\overline{1}} \right)!! + 11$ Jonathan Frank, 3/21 Rye, NY |
|||||||
980 (2.6) $\dfrac{1 - (1+1)\%}{.1\%}$ Steve Wilson, 5/11 Raytown, MO |
||||||||||
981 (2.8) $\dfrac{1.1 - 1\%}{.\overline{1}\%}$ Steve Wilson, 5/11 Raytown, MO |
988 (4.6) $\sinh \operatorname{arccsch} (1 \pm) - 11 - 1$ Paolo Pellegrini, 8/10 Martina Franca, Italy |
989 (2.4) $\dfrac{1}{.1\%} - 11$ Steve Wilson, 12/09 Raytown, MO |
990 (2.4) $\dfrac{\dfrac{1}{1\%} - 1}{.1}$ Steve Wilson, 5/11 Raytown, MO |
|||||||
991 (2.6) $\dfrac{1-1\%}{.1\%} + 1$ Paolo Pellegrini, 8/09 Martina Franca, Italy |
998 (2.4) $\dfrac{1}{.1\%} - 1 - 1$ Paolo Pellegrini, 8/09 Martina Franca, Italy |
999 (2.4) $\dfrac{1}{.1\%} \times 1 - 1$ Paolo Pellegrini, 8/09 Martina Franca, Italy |
1000 (2.2) $\dfrac{11}{1.1\%}$ Lisa Fisher, 7/09 Lawrence, KS |
|||||||
1001 (2.4) $\dfrac{1}{.1\%} + 1 \times 1$ Steve Wilson, 12/09 Raytown, MO |
1002 (2.4) $\dfrac{1}{.1\%} + 1 + 1$ Steve Wilson, 12/09 Raytown, MO |
1009 (2.6) $\dfrac{1+1\%}{.1\%} - 1$ Steve Wilson, 12/09 Raytown, MO |
1010 (2.4) $\dfrac{\dfrac{1}{1\%} + 1}{.1}$ Steve Wilson, 5/11 Raytown, MO |
|||||||
1011 (2.4) $\dfrac{1}{.1\%} + 11$ Steve Wilson, 12/09 Raytown, MO |
1012 (4.6) $\sinh \operatorname{arccsch} (1 \pm) + 11 + 1$ Paolo Pellegrini, 8/10 Martina Franca, Italy |
1020 (2.6) $\dfrac{1 + (1+1)\%}{.1\%}$ Steve Wilson, 5/11 Raytown, MO |
||||||||
1024 (3.2) $(1 + 1)^{1/.1}$ Steve Wilson, 7/23 Lawrence, KS |
||||||||||
1045 (5.8) $\dfrac{.\overline{1} + \ln\sqrt{\exp(1\%)}}{.\overline{11}\pmf}$ Steve Wilson, 7/23 Lawrence, KS |
||||||||||
1080 (2.8) $\dfrac{1.1 + .1}{.\overline{1}\%}$ Steve Wilson, 5/11 Raytown, MO |
||||||||||
1090 (2.4) $\dfrac{11 - .1}{1\%}$ Steve Wilson, 5/11 Raytown, MO |
||||||||||
1099 (2.2) $\dfrac{11}{1\%} - 1$ Jordan Cordry, 1/10 Overland Park, KS |
1100 (2.2) $\dfrac{11}{1\%} \times 1$ Jordan Cordry, 1/10 Overland Park, KS |
|||||||||
1101 (2.2) $\dfrac{11}{1\%} + 1$ Jordan Cordry, 1/10 Overland Park, KS |
1110 (2.2) $\dfrac{111}{.1}$ Steve Wilson, 11/09 Raytown, MO |
|||||||||
1111 (2.0) $1111$ Steve Wilson, 11/09 Raytown, MO |
||||||||||
1124 (3.0) $\dfrac{.1}{(1-.\overline{1})\%\%} - 1$ Steve Wilson, 10/11 Raytown, MO |
1125 (2.8) $\dfrac{1}{(1-.\overline{1}) \times .1\%}$ Steve Wilson, 10/11 Raytown, MO |
1126 (3.0) $\dfrac{.1}{(1-.\overline{1})\%\%} + 1$ Steve Wilson, 10/11 Raytown, MO |
||||||||
1154 (7.6) $11!! \times .\overline{1} - 1$ Jonathan Frank, 3/21 Rye, NY |
1155 (7.6) $11!! \times .\overline{1} \times 1$ Jonathan Frank, 3/21 Rye, NY |
1156 (7.6) $11!! \times .\overline{1} + 1$ Jonathan Frank, 3/21 Rye, NY |
||||||||
1200 (2.2) $\dfrac{11 + 1}{1\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1250 (2.6) $\dfrac{1}{(.1 - (1 + 1)\%)\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1277 (8.4) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{.\overline{1}} + \log{(1 \pm)}$ Jonathan Frank, 3/21 Rye, NY |
1278 (8.4) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{.\overline{1}} + \log{(1 \%)}$ Jonathan Frank, 3/21 Rye, NY |
1279 (5.8) $\dfrac{(-\log(1\%))^{-\log(1\%\%\pm)}}{.1} - 1$ Steve Wilson, 7/23 Lawrence, KS |
1280 (5.2) $\dfrac{(1 + 1)^{-\log(1\%\%\pm)}}{.1}$ Steve Wilson, 7/23 Lawrence, KS |
|||||||
1281 (5.8) $\dfrac{(-\log(1\%))^{-\log(1\%\%\pm)}}{.1} + 1$ Steve Wilson, 7/23 Lawrence, KS |
1282 (8.4) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{.\overline{1}} - \log{(1 \%)}$ Jonathan Frank, 3/21 Rye, NY |
1283 (8.4) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{.\overline{1}} - \log{(1 \pm)}$ Jonathan Frank, 3/21 Rye, NY |
||||||||
1393 (4.6) $\sinh \left( \left( \dfrac{1}{.1}-1 \right) \times \operatorname{arccsch} 1 \right)$ Paolo Pellegrini, 8/10 Martina Franca, Italy |
||||||||||
1700 (3.0) $\dfrac{1 + 1 - .\overline{1}}{.\overline{1}\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1710 (2.8) $\dfrac{1 + 1 - .1}{.\overline{1}\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1791 (2.8) $\dfrac{1 + 1 - 1\%}{.\overline{1}\%}$ Steve Wilson, 10/11 Raytown, MO |
1799 (2.6) $\dfrac{1 + 1}{.\overline{1}\%} - 1$ Steve Wilson, 10/11 Raytown, MO |
1800 (2.6) $\dfrac{1 + 1}{.\overline{1} \times 1\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||
1801 (2.6) $\dfrac{1 + 1}{.\overline{1}\%} + 1$ Steve Wilson, 10/11 Raytown, MO |
1809 (2.8) $\dfrac{1 + 1 + 1\%}{.\overline{1}\%}$ Steve Wilson, 10/11 Raytown, MO |
|||||||||
1890 (2.6) $\dfrac{1.1 + 1}{.\overline{1}\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1900 (2.6) $\dfrac{1 + 1 - .1}{.1\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1943 (5.8) $\dfrac{(-\log(1\pm)!)^{-\log(1\pm)}}{.\overline{1}} - 1$ Steve Wilson, 7/23 Lawrence, KS |
1944 (5.8) $\dfrac{(-\log(1\pm)!)^{-\log(1\pm)}}{.\overline{11}}$ Steve Wilson, 7/23 Lawrence, KS |
1945 (5.8) $\dfrac{(-\log(1\pm)!)^{-\log(1\pm)}}{.\overline{1}} + 1$ Steve Wilson, 7/23 Lawrence, KS |
||||||||
1990 (2.6) $\dfrac{1 + 1 - 1\%}{.1\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
1999 (2.4) $\dfrac{1 + 1}{.1\%} - 1$ Steve Wilson, 10/11 Raytown, MO |
2000 (2.4) $\dfrac{1 + 1}{.1\%} \times 1$ Steve Wilson, 10/11 Raytown, MO |
|||||||||
2001 (2.4) $\dfrac{1 + 1}{.1\%} + 1$ Steve Wilson, 10/11 Raytown, MO |
2010 (2.6) $\dfrac{1 + 1 + 1\%}{.1\%}$ Steve Wilson, 10/11 Raytown, MO |
|||||||||
2045 (5.0) $(-\log{(1\%)})^{11} + \log{(1 \pm)}$ Jonathan Frank, 3/21 Rye, NY |
2046 (5.0) $(-\log{(1\%)})^{11} + \log{(1 \%)}$ Jonathan Frank, 3/21 Rye, NY |
2047 (4.6) $(-\log{(1\%)})^{11} - 1$ Jonathan Frank, 3/21 Rye, NY |
2048 (3.0) $(1 + 1)^{11}$ Kashmira Sayani, 3/17 Overland Park, KS |
2049 (4.6) $(-\log{(1\%)})^{11} + 1$ Jonathan Frank, 3/21 Rye, NY |
2050 (5.0) $(-\log{(1\%)})^{11} - \log{(1 \%)}$ Jonathan Frank, 3/21 Rye, NY |
|||||
2051 (5.0) $(-\log{(1\%)})^{11} - \log{(1 \pm)}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
2079 (7.6) $11!! \times (.1 + .1)$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
2100 (2.4) $\dfrac{1.1 + 1}{.1\%}$ Steve Wilson, 10/11 Raytown, MO |
||||||||||
2310 (8.0) $11!! \times (.\overline{1} + .\overline{1})$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
2700 (2.6) $\dfrac{1 + 1 + 1}{.\overline{1}\%}$ Steve Wilson, 11/11 Raytown, MO |
||||||||||
2835 (8.2) $\left( \dfrac{1}{.\overline{1}} \right)!! \times \sqrt{ \dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21 Rye, NY |
2840 (7.6) $\left( \dfrac{1}{.1} \right)!! - \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
|||||||||
3000 (2.4) $\dfrac{1 + 1 + 1}{.1\%}$ Steve Wilson, 11/11 Raytown, MO |
||||||||||
3464 (7.8) $11!! \times \sqrt{.\overline{1}} - 1$ Jonathan Frank, 3/21 Rye, NY |
3465 (7.8) $11!! \times \sqrt{.\overline{1}} \times 1$ Jonathan Frank, 3/21 Rye, NY |
3466 (7.8) $11!! \times \sqrt{.\overline{1}} + 1$ Jonathan Frank, 3/21 Rye, NY |
||||||||
3740 (7.6) $\left( \dfrac{1}{.1} \right)!! - \dfrac{1}{1\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
3829 (7.4) $\left( \dfrac{1}{.1} \right)!! - 11$ Jonathan Frank, 3/21 Rye, NY |
3830 (7.6) $\left( \dfrac{1}{.1} \right)!! - \dfrac{1}{.1}$ Jonathan Frank, 3/21 Rye, NY |
|||||||||
3831 (7.8) $\left( \dfrac{1}{.1} \right)!! - \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
3837 (8.0) $\left( \dfrac{1}{.1} \right)!! - \sqrt{\dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21 Rye, NY |
3838 (7.4) $\left( \dfrac{1}{.1} \right)!! - 1 - 1$ Jonathan Frank, 3/21 Rye, NY |
3839 (7.2) $(11 - 1)!! - 1$ Jonathan Frank, 3/21 Rye, NY |
3840 (7.2) $(11 - 1)!! \times 1$ Jonathan Frank, 3/21 Rye, NY |
||||||
3841 (7.2) $(11 - 1)!! + 1$ Jonathan Frank, 3/21 Rye, NY |
3842 (7.4) $\left( \dfrac{1}{.1} \right)!! + 1 + 1$ Jonathan Frank, 3/21 Rye, NY |
3843 (8.0) $\left( \dfrac{1}{.1} \right)!! + \sqrt{\dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21 Rye, NY |
3849 (7.8) $\left( \dfrac{1}{.1} \right)!! + \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
3850 (7.6) $\left( \dfrac{1}{.1} \right)!! + \dfrac{1}{.1}$ Jonathan Frank, 3/21 Rye, NY |
||||||
3851 (7.4) $\left( \dfrac{1}{.1} \right)!! + 11$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
3940 (7.4) $\left( \dfrac{1}{.1} \right)!! + \dfrac{1}{1\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
4032 (4.0) $\left( \dfrac{1}{.1} \right)! \times .\overline{1} \times 1\%$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
4096 (4.6) $(-\log{(1\%)})^{11+1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
4224 (7.4) $\left( \dfrac{1}{.1} \right)!! \times 1.1$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
4480 (4.4) $\left( \dfrac{1}{.\overline{1}} \right)! \times .\overline{1} \times .\overline{1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
4500 (2.6) $\dfrac{1 - .1}{(1 + 1)\%\%}$ Steve Wilson, 11/11 Raytown, MO |
||||||||||
4840 (7.4) $\left( \dfrac{1}{.1} \right)!! + \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
4928 (8.2) $11!! \times .\overline{1} \times .\overline{1}\%$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
4950 (2.6) $\dfrac{1 - 1\%}{(1 + 1)\%\%}$ Steve Wilson, 11/11 Raytown, MO |
||||||||||
4995 (2.8) $\dfrac{1 - .1\%}{(1 + 1)\%\%}$ Steve Wilson, 11/11 Raytown, MO |
4999 (2.4) $\dfrac{1}{(1 + 1)\%\%} - 1$ Steve Wilson, 11/11 Raytown, MO |
5000 (2.4) $\dfrac{1}{(1 + 1)\%\%} \times 1$ Steve Wilson, 11/11 Raytown, MO |
||||||||
5001 (2.4) $\dfrac{1}{(1 + 1)\%\%} + 1$ Steve Wilson, 11/11 Raytown, MO |
5005 (2.8) $\dfrac{1 + .1\%}{(1 + 1)\%\%}$ Steve Wilson, 11/11 Raytown, MO |
|||||||||
5050 (2.6) $\dfrac{1 + 1\%}{(1 + 1)\%\%}$ Steve Wilson, 11/11 Raytown, MO |
||||||||||
5400 (3.8) $\dfrac{(1 + 1 + 1)!}{.\overline{1}\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
5500 (2.4) $\dfrac{1.1}{(1 + 1)\%\%}$ Steve Wilson, 11/11 Raytown, MO |
||||||||||
6000 (3.4) $\dfrac{(1 + 1 + 1)!}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
6480 (3.8) $\dfrac{((1 + 1 + 1)!)!}{.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
6561 (5.0) $(-\log{(1 \pm)})^{11 + \log{(1 \pm)}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
7200 (3.0) $\dfrac{ \dfrac{1}{.\overline{1}} - 1}{.\overline{1}\%}$ Steve Wilson, 8/13 Raytown, MO |
||||||||||
7680 (7.4) $\left( \dfrac{1}{.1} \right)!! \times (1 + 1)$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
8000 (2.8) $\dfrac{1 - .1 - .1}{1\%\%}$ Steve Wilson, 8/13 Raytown, MO |
||||||||||
8091 (3.0) $\dfrac{ \dfrac{1}{.\overline{1}\%} - 1}{.\overline{1}}$ Steve Wilson, 8/13 Raytown, MO |
8099 (3.0) $\dfrac{1}{.\overline{1} \times .\overline{1}\%} - 1$ Steve Wilson, 8/13 Raytown, MO |
8100 (2.8) $\dfrac{ \dfrac{1}{.1} - 1}{.\overline{1}\%}$ Steve Wilson, 8/13 Raytown, MO |
||||||||
8101 (3.0) $\dfrac{1}{.\overline{1} \times .\overline{1}\%} + 1$ Steve Wilson, 8/13 Raytown, MO |
8109 (3.0) $\dfrac{ \dfrac{1}{.\overline{1}\%} + 1}{.\overline{1}}$ Steve Wilson, 8/13 Raytown, MO |
|||||||||
8192 (5.0) $(-\log{(1\%)})^{11-\log{(1\%)}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
8505 (8.0) $\left( \dfrac{1}{.\overline{1}} \right)!! \times \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
9000 (3.6) $\dfrac{1}{1\%\%} - \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
9011 (3.6) $\dfrac{1}{.\overline{1} \pmf} + 11$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
9395 (7.4) $11!! - \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
9450 (7.8) $\left( \dfrac{1}{.\overline{1}} \right)!! \times \dfrac{1}{.1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
9801 (4.6) $( 1-\sinh \operatorname{arccsch} (1\%))^{1+1}$ Paolo Pellegrini, 8/10 Martina Franca, Italy |
||||||||||
9900 (2.6) $\dfrac{1}{1\%\%} - \dfrac{1}{1\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
9989 (2.4) $\dfrac{1}{1\%\%} - 11$ Jonathan Frank, 3/21 Rye, NY |
9990 (2.6) $\dfrac{1}{1\%\%} - \dfrac{1}{.1}$ Jonathan Frank, 3/21 Rye, NY |
|||||||||
9998 (2.4) $\dfrac{1}{1\%\%} - 1 - 1$ Jonathan Frank, 3/21 Rye, NY |
9999 (2.4) $\dfrac{1}{1\%\%} - 1 \times 1$ Jonathan Frank, 3/21 Rye, NY |
10000 (2.4) $\dfrac{1}{1\%\%} + 1 - 1$ Jonathan Frank, 3/21 Rye, NY |
||||||||
10001 (2.4) $\dfrac{1}{1\%\%} + 1 \times 1$ Jonathan Frank, 3/21 Rye, NY |
10002 (2.4) $\dfrac{1}{1\%\%} + 1 + 1$ Jonathan Frank, 3/21 Rye, NY |
10010 (2.6) $\dfrac{1}{1\%\%} + \dfrac{1}{.1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||
10011 (2.4) $\dfrac{1}{1\%\%} + 11$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
10100 (2.6) $\dfrac{1}{1\%\%} + \dfrac{1}{1\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
10295 (7.4) $11!! - \dfrac{1}{1\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
10384 (7.2) $11!! - 11$ Jonathan Frank, 3/21 Rye, NY |
10385 (7.4) $11!! - \dfrac{1}{.1}$ Jonathan Frank, 3/21 Rye, NY |
10386 (7.6) $11!! - \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||
10392 (7.6) $11!! - \log \left( \dfrac{1}{1 \pmf} \right)$ Jonathan Frank, 3/21 Rye, NY |
10393 (7.2) $11!! - 1 - 1$ Jonathan Frank, 3/21 Rye, NY |
10394 (7.2) $11!! - 1 \times 1$ Jonathan Frank, 3/21 Rye, NY |
10395 (7.2) $11!! \times 1 \times 1$ Jonathan Frank, 3/21 Rye, NY |
10396 (7.2) $11!! + 1 \times 1$ Jonathan Frank, 3/21 Rye, NY |
10397 (7.2) $11!! + 1 + 1$ Jonathan Frank, 3/21 Rye, NY |
10398 (7.6) $11!! + \log \left( \dfrac{1}{1 \pmf} \right)$ Jonathan Frank, 3/21 Rye, NY |
||||
10404 (7.6) $11!! + \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
10405 (7.4) $11!! + \dfrac{1}{.1}$ Jonathan Frank, 3/21 Rye, NY |
10406 (7.6) $11!! + 11$ Jonathan Frank, 3/21 Rye, NY |
||||||||
10495 (7.4) $11!! + \dfrac{1}{1\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
11000 (2.4) $\dfrac{11}{.1 \times 1\%}$ Luke Sauvadon, 6/12 Lawrence, KS |
||||||||||
11100 (2.2) $\dfrac{111}{1\%}$ Lisa Fisher, 7/09 Lawrence, KS |
||||||||||
11395 (7.4) $11!! + \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
11520 (8.0) $\left( \dfrac{1}{.1} \right)!! \times \sqrt{\dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
11550 (7.8) $11!! \times \dfrac{.\overline{1}}{.1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
12000 (3.2) $\dfrac{11 + 1}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
16384 (5.0) $(-\log{(1\%)})^{11-\log{(1\pm)}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
19683 (5.0) $(-\log{(1 \pm)})^{11 + \log{(1 \%)}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
20790 (7.2) $11!! \times (1 + 1)$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
31185 (7.6) $11!! \times \log \left( \dfrac{1}{1 \pmf} \right)$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
34560 (7.8) $\left( \dfrac{1}{.1} \right)!! \times \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
34650 (8.0) $\dfrac{11!!}{.1} \times \sqrt{.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
36287 (3.4) $(11 - 1)! \% - 1$ Jonathan Frank, 3/21 Rye, NY |
36288 (3.4) $(11 - 1)! \% \times 1$ Jonathan Frank, 3/21 Rye, NY |
36289 (3.4) $(11 - 1)! \% + 1$ Jonathan Frank, 3/21 Rye, NY |
||||||||
38400 (7.6) $\left( \dfrac{1}{.1} \right)!! \times \dfrac{1}{.1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
42240 (7.4) $\left( \dfrac{1}{.1} \right)!! \times 11$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
44351 (3.8) $11!\% \times .\overline{1} - 1$ Jonathan Frank, 3/21 Rye, NY |
44352 (3.8) $11! \times .\overline{1} \times 1\%$ Jonathan Frank, 3/21 Rye, NY |
44353 (3.8) $11!\% \times .\overline{1} + 1$ Jonathan Frank, 3/21 Rye, NY |
||||||||
44800 (4.2) $\left( \dfrac{1}{.1} \right)! \times .\overline{1} \times .\overline{1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
46079 (7.2) $(11 + 1)!! - 1$ Jonathan Frank, 3/21 Rye, NY |
46080 (7.2) $(11 + 1)!! \times 1$ Jonathan Frank, 3/21 Rye, NY |
|||||||||
46081 (7.2) $(11 + 1)!! + 1$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
51975 (7.6) $\dfrac{11!!}{.1 + .1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
54000 (3.8) $\dfrac{(1 + 1 + 1)!}{.\overline{1}\pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
59049 (4.6) $(-\log{(1 \pm)})^{11-1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
64800 (4.2) $\dfrac{((1 + 1 + 1)!)!\%}{.\overline{1}\pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
93552 (8.0) $\dfrac{11!!}{.\overline{1}} + \log{(1 \pm)}$ Jonathan Frank, 3/21 Rye, NY |
93553 (8.0) $\dfrac{11!!}{.\overline{1}} + \log{(1 \%)}$ Jonathan Frank, 3/21 Rye, NY |
93554 (7.6) $\dfrac{11!!}{.\overline{1}} - 1$ Jonathan Frank, 3/21 Rye, NY |
93555 (7.6) $11!! \times \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
93556 (7.6) $\dfrac{11!!}{.\overline{1}} + 1$ Jonathan Frank, 3/21 Rye, NY |
93557 (8.0) $\dfrac{11!!}{.\overline{1}} - \log{(1 \%)}$ Jonathan Frank, 3/21 Rye, NY |
93558 (8.0) $\dfrac{11!!}{.\overline{1}} - \log{(1 \pm)}$ Jonathan Frank, 3/21 Rye, NY |
||||
94500 (7.8) $\left( \dfrac{1}{.\overline{1}} \right)!! \times \dfrac{1}{1\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
100000 (3.4) $\dfrac{1}{1\%} \times \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
103947 (7.8) $\dfrac{11!!}{.1} + \log(1 \pm)$ Jonathan Frank, 3/21 Rye, NY |
103948 (7.8) $\dfrac{11!!}{.1} + \log(1 \%)$ Jonathan Frank, 3/21 Rye, NY |
103949 (7.4) $\dfrac{11!!}{.1} - 1$ Jonathan Frank, 3/21 Rye, NY |
103950 (7.4) $11!! \times \dfrac{1}{.1}$ Jonathan Frank, 3/21 Rye, NY |
|||||||
103951 (7.4) $\dfrac{11!!}{.1} + 1$ Jonathan Frank, 3/21 Rye, NY |
103952 (7.8) $\dfrac{11!!}{.1} - \log(1 \%)$ Jonathan Frank, 3/21 Rye, NY |
103953 (7.8) $\dfrac{11!!}{.1} - \log(1 \pm)$ Jonathan Frank, 3/21 Rye, NY |
||||||||
111000 (2.4) $\dfrac{111}{.1\%}$ Lisa Fisher, 7/09 Lawrence, KS |
||||||||||
114345 (7.2) $11!! \times 11$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
133055 (4.0) $11!\% \times \sqrt{.\overline{1}} - 1$ Jonathan Frank, 3/21 Rye, NY |
133056 (4.0) $11!\% \times \sqrt{.\overline{1}} \times 1$ Jonathan Frank, 3/21 Rye, NY |
133057 (4.0) $11!\% \times \sqrt{.\overline{1}} + 1$ Jonathan Frank, 3/21 Rye, NY |
||||||||
135135 (7.2) $(11 + 1 + 1)!!$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
161050 (3.4) $\sqrt[.1]{\sqrt{11}} - 1$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
161051 (3.4) $\sqrt[.1]{\sqrt{11}} \times 1$ Jonathan Frank, 3/21 Rye, NY |
161052 (3.4) $\sqrt[.1]{\sqrt{11}} + 1$ Jonathan Frank, 3/21 Rye, NY |
|||||||||
177144 (5.0) $(-\log{(1 \pm)})^{11} + \log{(1 \pm)}$ Jonathan Frank, 3/21 Rye, NY |
177145 (5.0) $(-\log{(1 \pm)})^{11} + \log{(1 \%)}$ Jonathan Frank, 3/21 Rye, NY |
177146 (4.6) $(-\log{(1 \pm)})^{11} - 1$ Jonathan Frank, 3/21 Rye, NY |
177147 (4.4) $\left( \log \left( \dfrac{1}{1 \pmf} \right)\right)^{11}$ Jonathan Frank, 3/21 Rye, NY |
177148 (4.6) $(-\log{(1 \pm)})^{11} + 1$ Jonathan Frank, 3/21 Rye, NY |
177149 (5.0) $(-\log{(1 \pm)})^{11} - \log{(1 \%)}$ Jonathan Frank, 3/21 Rye, NY |
177150 (5.0) $(-\log{(1 \pm)})^{11} - \log{(1 \pm)}$ Jonathan Frank, 3/21 Rye, NY |
||||
181440 (3.6) $\dfrac{ \left( \dfrac{1}{.\overline{1}} \right)!}{1 + 1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
199584 (3.4) $\dfrac{11!\%}{1 + 1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
384000 (7.6) $\left( \dfrac{1}{.1} \right)!! \times \dfrac{1}{1\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
398168 (3.6) $11!\% - \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
399068 (3.6) $11!\% - \dfrac{1}{1 \%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
399157 (3.4) $11!\% - 11$ Jonathan Frank, 3/21 Rye, NY |
399158 (3.6) $11!\% - \dfrac{1}{.1}$ Jonathan Frank, 3/21 Rye, NY |
399159 (3.8) $11!\% - \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||
399165 (4.0) $11!\% - \sqrt{ \dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21 Rye, NY |
399166 (3.4) $11!\% - 1 - 1$ Jonathan Frank, 3/21 Rye, NY |
399167 (3.4) $11!\% - 1 \times 1$ Jonathan Frank, 3/21 Rye, NY |
399168 (3.4) $11!\% \times 1 \times 1$ Jonathan Frank, 3/21 Rye, NY |
399169 (3.4) $11!\% + 1 \times 1$ Jonathan Frank, 3/21 Rye, NY |
399170 (3.4) $11!\% + 1 + 1$ Jonathan Frank, 3/21 Rye, NY |
|||||
399171 (4.0) $11!\% + \sqrt{ \dfrac{1}{.\overline{1}}}$ Jonathan Frank, 3/21 Rye, NY |
399177 (3.8) $11!\% + \dfrac{1}{.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
399178 (3.6) $11!\% + \dfrac{1}{.1}$ Jonathan Frank, 3/21 Rye, NY |
399179 (3.4) $11!\% + 11$ Jonathan Frank, 3/21 Rye, NY |
|||||||
399268 (3.6) $11!\% + \dfrac{1}{1 \%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
400168 (3.6) $11!\% + \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
492800 (4.0) $11! \times .\overline{1} \times .\overline{1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
531441 (4.6) $(-\log{(1 \pm)})^{11+1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
648000 (4.0) $\dfrac{((1 + 1 + 1)!)!}{.\overline{1}\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
798336 (3.4) $11!\% \times (1 + 1)$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
945000 (7.8) $\left( \dfrac{1}{.\overline{1}} \right)!! \times \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
1000000 (3.4) $\dfrac{1}{1 \pmmf} + 1 - 1$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
1000002 (3.4) $\dfrac{1}{1 \pmmf} + 1 + 1$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
1039500 (7.4) $11!! \times \dfrac{1}{1\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
1110000 (2.4) $\dfrac{111}{1\%\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
1594323 (5.0) $(-\log{(1 \pm)})^{11-\log{(1\%)}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
3628799 (3.2) $(11 - 1)! - 1$ Jonathan Frank, 3/21 Rye, NY |
3628800 (3.2) $(11 - 1)! \times 1$ Jonathan Frank, 3/21 Rye, NY |
|||||||||
3628801 (3.2) $(11 - 1)! + 1$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
3840000 (7.6) $\left( \dfrac{1}{.1} \right)!! \times \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
4194304 (4.6) $\left( \log \left( \dfrac{1}{1\%\%} \right)\right)^{11}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
4782969 (5.0) $(-\log{(1 \pm)})^{11-\log{(1\pm)}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
10000000 (3.6) $\dfrac{1}{1\% \times 1 \pm \times 1\%}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
10395000 (7.4) $11!! \times \dfrac{1}{1 \pmf}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
39916789 (3.2) $11! - 11$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
39916798 (3.2) $11! - 1 - 1$ Jonathan Frank, 3/21 Rye, NY |
39916799 (3.2) $11! - 1 \times 1$ Jonathan Frank, 3/21 Rye, NY |
39916800 (3.2) $11! \times 1 \times 1$ Jonathan Frank, 3/21 Rye, NY |
||||||||
39916801 (3.2) $11! + 1 \times 1$ Jonathan Frank, 3/21 Rye, NY |
39916801 (3.2) $11! + 1 + 1$ Jonathan Frank, 3/21 Rye, NY |
|||||||||
39916811 (3.2) $11! + 11$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
48828125 (4.6) $\left( \log \left( \dfrac{1}{1\% \pmf} \right)\right)^{11}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
100000000 (3.4) $\left( \dfrac{1}{1\%\%} \right)^{1+1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
362797056 (4.6) $\left( \log \left( \dfrac{1}{1 \pmmf} \right)\right)^{11}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
387420489 (4.2) $\left( \dfrac{1}{.\overline{1}} \right)^{1/.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
1000000000 (3.6) $\left( \dfrac{1}{.1} \right)^{1/.\overline{1}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
3486784401 (3.6) $(.\overline{1})^{-11+1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
10000000000 (3.4) $\left( \dfrac{1}{.1} \right)^{1/.1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
31381059609 (3.4) $\left( \dfrac{1}{.\overline{1}} \right)^{11}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
hundred billion (3.2) $\left( \dfrac{1}{.1} \right)^{11}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
282429536481 (3.6) $(.\overline{1})^{-11-1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
285311670611 (3.0) $11^{11}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
trillion (3.4) $.1^{-11-1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
ten trillion (4.6) $.1^{\log{(1\%)}-11}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
hundred trillion (4.6) $.1^{\log{(1\pm)}-11}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
quadrillion (3.6) $\sqrt[.1 + .1]{ \dfrac{1}{1 \pmf}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
hundred quintillion (3.4) $\sqrt[.1]{ \dfrac{1}{1 \%}} \times 1$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
ten sextillion (3.2) $\left( \dfrac{1}{1\%} \right)^{11}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
septillion (3.4) $(1 \%)^{-11-1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
ten septillion (3.8) $\sqrt{\sqrt{ \left( \dfrac{1}{.1} \right)^{1/(1\%)}}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
nonillion (3.2) $(1 \pm)^{1-11}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
decillion (3.2) $\left( \dfrac{1}{1 \pmf} \right)^{11}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
undecillion (3.4) $(1 \pm)^{-11-1}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
hundred tredecillion (3.4) $\left( \dfrac{1}{1\%\%} \right)^{11}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
hundred quinquadecillion (3.6) $\sqrt{ \left( \dfrac{1}{.1} \right)^{1/(1\%)}}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
ten septendecillion (3.4) $\left( \dfrac{1}{1\% \pmf} \right)^{11}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
unvigintillion (3.4) $\left( \dfrac{1}{1 \pmmf} \right)^{11}$ Jonathan Frank, 3/21 Rye, NY |
||||||||||
googol (2.4) $\left( \dfrac{1}{.1} \right)^{1/(1\%)}$ Paolo Pellegrini, 3/09 Martina Franca, Italy |
||||||||||
googolplex (3.8) $\left( \dfrac{1}{.1} \right) ^{\sqrt[-1\%]{.1}}$ Ralph Jeffords, 4/09 Centreville, VA |
Page 1 (1-400), Page 2 (401+).