\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator{\antilog}{antilog} \DeclareMathOperator{\arcsec}{arcsec} \DeclareMathOperator{\arccsc}{arccsc} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \DeclareMathOperator{\arsinh}{arsinh} \DeclareMathOperator{\arcosh}{arcosh} \DeclareMathOperator{\arcsch}{arcsch} \)

Integermania!

Four Fours

Four fours is a classic problem, dating back at least 90 years. Create each of the positive integers using four copies of 4, and any standard operations. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here!  This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201-1600), Page 5 (1601-2000), Page 6 (2001-2400), Page 7 (2401-2800), Page 8 (2801-3200), Page 9 (3201-3600), Page 10 (3601-4000), Page 11 (4001+).

  1601 (4.0)
$\dfrac{\sqrt[.4]{4} + (\sqrt{4})\%}{(\sqrt{4})\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1602 (3.6)
$(4! - 4)^4 \% + \sqrt{4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1603 (5.0)
$\dfrac{4}{(\cot\arctan 4)\%} + \log\left(\dfrac{4}{4\pmf}\right)$
Steve Wilson, 6/24
Lawrence, KS
1604 (3.4)
$(4! - 4)^4 \% + 4$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1605 (4.4)
$\dfrac{(4 + (\sqrt{4})\%)\% + 4!\pmf}{4\%\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1606 (4.6)
$\dfrac{4! \times .\overline{4} + 4\%}{\left(\sqrt{.\overline{4}}\right)\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1607 (5.4)
$\dfrac{4}{(\cot\arctan 4)\%} + \cosh(\sqrt{4} \times \arcosh\sqrt{4})$
Steve Wilson, 5/24
Lawrence, KS
1608 (4.2)
$\dfrac{4 + (\sqrt{4})\%}{\left(\sqrt{\sqrt{4^{-4}}}\right)\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1609 (5.0)
$\dfrac{4}{(\cot\arctan 4)\%} + \dfrac{4}{.\overline{4}}$
Steve Wilson, 5/24
Lawrence, KS
1610 (4.0)
$\dfrac{\sqrt[.4]{4} + \sqrt{4\%}}{(\sqrt{4})\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1611 (3.8)
$\dfrac{(4 + \sqrt{4})! - 4}{.\overline{4}}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1612 (3.8)
$4 \times \left( (4 + 4)!\% - \sqrt{4\%} \right)$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1613 (3.8)
$(4 + 4)! \times 4\% + \sqrt{4\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1614 (4.6)
$\dfrac{\sqrt{.\overline{4}} + 4\%}{.\overline{4}\pmf} + 4!$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1615 (5.4)
$\coth\ln\coth\arcosh(4! + 4) + 4! \times \sqrt{4}$
Steve Wilson, 11/23
Lawrence, KS
1616 (3.8)
$\dfrac{(4 + \sqrt{4})!}{.\overline{4}} - 4$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1617 (5.4)
$\coth\ln\coth\arcosh(4! + 4) + \dfrac{\sqrt{4}}{4\%}$
Steve Wilson, 11/23
Lawrence, KS
1618 (4.0)
$\dfrac{(4 + \sqrt{4})!}{.\overline{4}} -\sqrt{4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1619 (4.2)
$\dfrac{(4 + \sqrt{4})! - .\overline{4}}{.\overline{4}}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1620 (3.4)
$\dfrac{4}{(.\overline{4} - .\overline{4} \times .\overline{4})\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1621 (4.2)
$\dfrac{(4+\sqrt{4})! + .\overline{4}}{.\overline{4}}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1622 (4.0)
$\dfrac{(4+\sqrt{4})!}{.\overline{4}} + \sqrt{4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1623 (5.4)
$\dfrac{4}{(\cot\arctan 4)\%} + \cot\arctan(4\%) - \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1624 (3.6)
$(4! - 4)^4 \% + 4!$
Steve Wilson, 11/09
Raytown, MO
1625 (3.6)
$\dfrac{4! + \sqrt{4}}{4 \times 4\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1626 (4.0)
$\dfrac{4 - 4\%}{4!\%\%} - 4!$
Steve Wilson, 11/09
Raytown, MO
1627 (5.6)
$\dfrac{\left(\ln\sqrt{\sqrt{\exp 4!}}\right) + 4}{.\overline{4}} - \sqrt{4}$
Steve Wilson, 4/24
Lawrence, KS
1628 (4.8)
$\dfrac{4}{(\cot\arctan 4)\%} + 4! + 4$
Steve Wilson, 5/24
Lawrence, KS
1629 (3.8)
$\dfrac{(4 + \sqrt{4})! + 4}{.\overline{4}}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1630 (4.4)
$\dfrac{.\overline{4} + (4! + 4)\%}{.\overline{4}\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1631 (5.2)
$\dfrac{4}{(\cot\arctan 4)\%} + \cosh(\sqrt{4} \times \arcosh 4)$
Steve Wilson, 5/24
Lawrence, KS
1632 (3.4)
$(44 + 4!) \times 4!$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1633 (5.2)
$\dfrac{4}{(\cot\arctan 4)\%} + \cosh(\sqrt{4} \times \arsinh 4)$
Steve Wilson, 5/24
Lawrence, KS
1634 (5.2)
$\dfrac{4}{(\cot\arctan 4)\%} + 4! + (\antilog 4)\pm$
Steve Wilson, 5/24
Lawrence, KS
1635 (4.6)
$\dfrac{ \sqrt{.\overline{4}} + (4 + \sqrt{4})\%}{.\overline{4}\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1636 (5.4)
$\dfrac{4}{(\cot\arctan 4)\%} + \dfrac{4!}{\sqrt{.\overline{4}}}$
Steve Wilson, 5/24
Lawrence, KS
1637 (5.4)
$\dfrac{4}{(\cot\arctan 4)\%} + \coth\ln\coth\arsinh 4 + 4$
Steve Wilson, 5/24
Lawrence, KS
1638 (4.0)
$\dfrac{4 + 4\pmf}{\left( \sqrt{4} + .\overline{4} \right)\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1639 (5.6)
$\dfrac{4!}{(\csch\ln\sqrt{4})\%} - \cosh(4 \times \arsinh\sqrt{4})$
Steve Wilson, 5/24
Lawrence, KS
1640 (3.4)
$\dfrac{4 + 4^4 \%}{4\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1641 (4.0)
$\dfrac{4 - 4\pmf}{4!\%\%} - 4!$
Steve Wilson, 11/09
Raytown, MO
1642 (4.4)
$\dfrac{4}{4!\%\%} - \sqrt{.\overline{4}} - 4!$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1643 (5.8)
$\dfrac{(\antilog 4)\pmf}{\sech(4 \times \arsinh\sqrt{4})} + \coth\ln\coth\arsinh 4$
Steve Wilson, 5/24
Lawrence, KS
1644 (4.0)
$\dfrac{(4 + \sqrt{4})!}{.\overline{4}} + 4!$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1645 (5.2)
$\dfrac{4}{(\cot\arctan 4)\%} + \dfrac{4!}{\csch\ln 4}$
Steve Wilson, 5/24
Lawrence, KS
1646 (3.8)
$\dfrac{4 - 4\%}{4!\%\%} - 4$
Steve Wilson, 11/09
Raytown, MO
1647 (5.6)
$\dfrac{4}{(\cot\arctan 4)\%} + \cosh(\sqrt{4} \times \arcosh\sqrt{4!})$
Steve Wilson, 5/24
Lawrence, KS
1648 (4.0)
$\left( \sqrt{\sqrt{4^{4!}}} + 4! \right) \times .4$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1649 (4.0)
$\sqrt[\sqrt{4\%}]{4} + \sqrt{4\%^{-4}}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1650 (3.8)
$\dfrac{44}{4\% \times \sqrt{.\overline{4}}}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1651 (4.2)
$\dfrac{4 - (4 - 4!\%)\%}{4!\%\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1652 (4.0)
$\dfrac{4 - 4\%}{4!\%\%} + \sqrt{4}$
Steve Wilson, 11/09
Raytown, MO
1653 (5.6)
$\dfrac{\left(\ln\sqrt{\sqrt{\exp 4!}}\right) + 4}{.\overline{4}} + 4!$
Steve Wilson, 4/24
Lawrence, KS
1654 (3.8)
$\dfrac{4 - 4\%}{4!\%\%} + 4$
Steve Wilson, 11/09
Raytown, MO
1655 (4.0)
$\dfrac{4 - (4! + 4)\pmf}{4!\%\%}$
Steve Wilson, 11/09
Raytown, MO
1656 (3.6)
$\dfrac{(4+4)!}{4!} - 4!$
Steve Wilson, 11/09
Raytown, MO
1657 (5.6)
$\dfrac{4}{(\cot\arctan 4)\%} + \coth\ln\coth\arsinh 4 + 4!$
Steve Wilson, 5/24
Lawrence, KS
1658 (5.4)
$\dfrac{\coth\ln\coth\arsinh 4 + 4 \times 4\%}{(\sqrt{4})\%}$
Steve Wilson, 5/24
Lawrence, KS
1659 (3.8)
$\dfrac{(4^4 + 4!)\%}{\sqrt{4}}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1660 (4.6)
$\dfrac{\sqrt{.\overline{4}} + 44\%}{\left(\sqrt{.\overline{4}} \right)\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1661 (3.8)
$\dfrac{4 - 4\pmf}{4!\%\%} - 4$
Steve Wilson, 11/09
Raytown, MO
1662 (4.2)
$\dfrac{4}{4!\%\%} - \sqrt{.\overline{4}} - 4$
Steve Wilson, 11/09
Raytown, MO
1663 (4.0)
$\dfrac{4 - 4\pmf}{4!\%\%} - \sqrt{4}$
Steve Wilson, 11/09
Raytown, MO
1664 (4.4)
$\left(\sqrt{(\sqrt{4})\%^{-4}} - 4 \right) \times \sqrt{.\overline{4}}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1665 (3.8)
$\dfrac{4 - 4\pmf}{(\sqrt{4} + .4)\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1666 (4.2)
$\dfrac{4}{(\sqrt{4} + .4)\pmf} - \sqrt{.\overline{4}}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1667 (4.0)
$\dfrac{4 - 4\pmf}{4!\%\%} + \sqrt{4}$
Steve Wilson, 11/09
Raytown, MO
1668 (4.2)
$\dfrac{4 + (\sqrt[.4]{4})\%\%}{4!\%\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1669 (3.8)
$\dfrac{4 - 4\pmf}{4!\%\%} + 4$
Steve Wilson, 11/09
Raytown, MO
1670 (3.8)
$\dfrac{4 + (4+4)\pmf}{4!\%\%}$
Steve Wilson, 11/09
Raytown, MO
  1671 (4.0)
$\dfrac{4 + (\sqrt{4})\%}{4!\%\%} - 4$
Steve Wilson, 11/09
Raytown, MO
1672 (4.8)
$\dfrac{4! \times \left(.\overline{4} + (\sqrt{4})\% \right)}{\left( \sqrt{.\overline{4}} \right)\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1673 (4.2)
$\dfrac{4 + (\sqrt{4})\%}{4!\%\%} - \sqrt{4}$
Steve Wilson, 11/09
Raytown, MO
1674 (4.0)
$\dfrac{(4 + \sqrt{4})! + 4!}{.\overline{4}}$
Steve Wilson, 10/09
Raytown, MO
1675 (4.0)
$\dfrac{4 + (\sqrt{4})\%}{(\sqrt{4} + .4)\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1676 (3.4)
$\dfrac{(4+4)!}{4!} - 4$
Steve Wilson, 11/09
Raytown, MO
1677 (4.2)
$\dfrac{4 + (\sqrt{4})\%}{4!\%\%} + \sqrt{4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1678 (3.6)
$\dfrac{(4+4)!}{4!} - \sqrt{4}$
Steve Wilson, 11/09
Raytown, MO
1679 (3.6)
$\dfrac{(4+4)! - 4!}{4!}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1680 (3.6)
$\dfrac{(4+4)!}{(\sqrt{4 \times 4})!}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1681 (3.6)
$\dfrac{(4+4)! + 4!}{4!}$
Steve Wilson, 11/09
Raytown, MO
1682 (3.6)
$\dfrac{(4+4)!}{4!} + \sqrt{4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1683 (5.8)
$\dfrac{\coth\ln 4 - (\coth\ln 4)\%}{\left(\sqrt{.\overline{44}}\right)\pmf}$
Steve Wilson, 5/24
Lawrence, KS
1684 (3.4)
$\dfrac{(4+4)!}{4!} + 4$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1685 (3.8)
$\dfrac{4 + 44\pmf}{4!\%\%}$
Steve Wilson, 10/09
Raytown, MO
1686 (5.6)
$\dfrac{(4+4)!}{4!} + \Gamma(4)$
Steve Wilson, 5/24
Lawrence, KS
1687 (5.8)
$\dfrac{\coth\ln 4 - (\coth\ln 4)\%}{\left(\sqrt{.\overline{4}}\right)\pmf} + 4$
Steve Wilson, 5/24
Lawrence, KS
1688 (5.6)
$\dfrac{\coth\ln 4}{\left(\sqrt{.\overline{4}}\right)\pmf} - \dfrac{4!}{\sqrt{4}}$
Steve Wilson, 5/24
Lawrence, KS
1689 (4.0)
$\dfrac{4 - 4\pmf}{4!\%\%} + 4!$
Steve Wilson, 11/09
Raytown, MO
1690 (3.8)
$\dfrac{\sqrt{(4! + \sqrt{4})^4}}{.4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1691 (5.6)
$\dfrac{\coth\ln 4}{\left(\sqrt{.\overline{4}}\right)\pmf} - \dfrac{4}{.\overline{4}}$
Steve Wilson, 5/24
Lawrence, KS
1692 (4.2)
$(4 - 4!\pm) \times \dfrac{\sqrt{4}}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1693 (5.6)
$\dfrac{\coth\ln 4 - (\sqrt{4})\pmf}{\left(\sqrt{.\overline{4}}\right)\pmf} - 4$
Steve Wilson, 5/24
Lawrence, KS
1694 (5.2)
$\dfrac{4 + 4!\%}{(\cot\arctan 4)\%} - \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1695 (4.4)
$\dfrac{4 + (\sqrt{4})\%\%}{(4!\% - 4\pm)\%\phantom8}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1696 (4.2)
$\dfrac{4 + 4!\%}{\left(\sqrt{\sqrt{4^{-4}}}\right)\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1697 (5.6)
$\dfrac{\coth\ln 4}{\left(\sqrt{.\overline{4}}\right)\pmf} - \log\left(\dfrac{4}{4\pmf}\right)$
Steve Wilson, 6/24
Lawrence, KS
1698 (5.2)
$\dfrac{4 + 4!\%}{(\cot\arctan 4)\%} + \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1699 (4.2)
$\dfrac{4 + (\sqrt{4})\%}{4!\%\%} + 4!$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1700 (3.0)
$\dfrac{4 + 4 - .\overline{4}}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1701 (4.4)
$\dfrac{\sqrt{4} + 4!\%}{\left(\sqrt[.4]{.\overline{4}} \right)\%}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1702 (5.4)
$\dfrac{\coth\ln 4}{\left(\sqrt{.\overline{4}}\right)\pmf} + \dfrac{4}{\sqrt{4}}$
Steve Wilson, 5/24
Lawrence, KS
1703 (5.6)
$\dfrac{\coth\ln 4}{\left(\sqrt{.\overline{4}}\right)\pmf} + \log\left(\dfrac{4}{4\pmf}\right)$
Steve Wilson, 6/24
Lawrence, KS
1704 (3.6)
$\dfrac{(4+4)!}{4!} + 4!$
Steve Wilson, 11/09
Raytown, MO
1705 (4.2)
$\dfrac{\left( \sqrt{\sqrt{4^{4!}}} - 4 \right)\%}{4!\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1706 (4.8)
$\dfrac{\left(\sqrt{.\overline{4}}\right)\%}{4^{-4}\pm} - \sqrt{.\overline{4}}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1707 (5.6)
$\dfrac{\coth\ln 4 + (\sqrt{4})\pmf}{\left(\sqrt{.\overline{4}}\right)\pmf} + 4$
Steve Wilson, 5/24
Lawrence, KS
1708 (5.2)
$\dfrac{\coth\ln 4}{\left(\sqrt{.\overline{4}}\right)\pmf} + 4 + 4$
Steve Wilson, 5/24
Lawrence, KS
1709 (5.6)
$\dfrac{\coth\ln 4}{\left(\sqrt{.\overline{4}}\right)\pmf} + \dfrac{4}{.\overline{4}}$
Steve Wilson, 5/24
Lawrence, KS
1710 (2.8)
$\dfrac{4 + 4 - .4}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1711 (4.8)
$\dfrac{.\overline{4} + (4! - .\overline{4}\%)\%}{4\%\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1712 (4.0)
$\dfrac{4 - 4! \times 4!\pmf}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1713 (5.8)
$\dfrac{\coth\ln 4 + (\coth\ln 4)\%}{\left(\sqrt{.\overline{4}}\right)\pmf} - 4$
Steve Wilson, 5/24
Lawrence, KS
1714 (4.2)
$\dfrac{4! - 4\pmf}{\left( \sqrt{\sqrt{4} - 4\%} \right)\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1715 (5.8)
$\dfrac{\coth\ln 4}{\left(\sqrt{.\overline{4}}\right)\pmf} + \dfrac{\arcsec\sqrt{4}}{4^\circ}$
Steve Wilson, 5/24
Lawrence, KS
1716 (4.6)
$\dfrac{\sqrt{.\overline{4}} + 4! \times 4\pmf}{.\overline{4}\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1717 (5.8)
$\dfrac{\coth\ln 4 + (\coth\ln 4)\%}{\left(\sqrt{.\overline{44}}\right)\pmf}$
Steve Wilson, 5/24
Lawrence, KS
1718 (5.4)
$\dfrac{\coth\ln\coth\arcosh\sqrt{4}}{4\pmf} - \sqrt[.4]{4}$
Steve Wilson, 5/24
Lawrence, KS
1719 (5.8)
$\dfrac{\coth\ln\coth\arcosh\sqrt{4}}{4\pmf} - \cosh(\sqrt{4} \times \arcosh 4)$
Steve Wilson, 5/24
Lawrence, KS
1720 (3.6)
$\dfrac{4}{4\pmf} + (4 + \sqrt{4})!$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1721 (5.8)
$\dfrac{\coth\ln 4 - (\sqrt{4})\pmf}{\left(\sqrt{.\overline{4}}\right)\pmf} + 4!$
Steve Wilson, 5/24
Lawrence, KS
1722 (5.6)
$\dfrac{\coth\ln 4}{\left(\sqrt{.\overline{4}}\right)\pmf} - 4! + \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1723 (5.8)
$\dfrac{\cot\arctan(4\%) - \sqrt{4}}{(\csch\ln\sqrt{4})\%} - \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1724 (4.2)
$\sqrt{\sqrt{\sqrt{\left( \dfrac{4!}{\sqrt{4}} \right)^{4!}}}} - 4$
Steve Wilson, 11/09
Raytown, MO
1725 (4.4)
$\dfrac{\sqrt{.\overline{4}} + \dfrac{.4}{4}}{.\overline{4}\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1726 (4.2)
$\dfrac{4 + \sqrt{4\%}}{4!\%\%} - 4!$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1727 (5.8)
$\dfrac{\cot\arctan(4\%) - \sqrt{4}}{(\csch\ln\sqrt{4})\%} + \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1728 (3.6)
$(4 \times 4! - 4!) \times 4!$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1729 (5.6)
$\dfrac{\cot\arctan(4\%) - \sqrt{4}}{(\csch\ln\sqrt{4})\%} + 4$
Steve Wilson, 5/24
Lawrence, KS
1730 (4.2)
$\dfrac{4 - \dfrac{4!\%}{.\overline{4}}}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1731 (5.8)
$\dfrac{\coth\ln 4}{\left(\sqrt{.\overline{4}}\right)\pmf} + \cosh(\sqrt{4} \times \arcosh 4)$
Steve Wilson, 5/24
Lawrence, KS
1732 (4.2)
$\sqrt{\sqrt{\sqrt{\left( \dfrac{4!}{\sqrt{4}} \right)^{4!}}}} + 4$
Steve Wilson, 11/09
Raytown, MO
1733 (5.8)
$\dfrac{\coth\ln 4}{\left(\sqrt{.\overline{4}}\right)\pmf} + \cosh(\sqrt{4} \times \arsinh 4)$
Steve Wilson, 5/24
Lawrence, KS
1734 (4.2)
$\sqrt{\left(\dfrac{\sqrt{4} + 4\%}{(\sqrt{4!})\%} \right)^4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1735 (4.4)
$\sqrt{4!\pm^{-4}}\phantom8 - \dfrac{.\overline{4}}{.4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1736 (4.2)
$\sqrt{4!\pm^{-4}}\phantom8 - \dfrac{.\overline{4}}{4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1737 (4.2)
$\left( 4\%^{-4}\% + \sqrt{4} \right) \times .\overline{4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1738 (5.6)
$\dfrac{\coth\ln\coth\arcosh\sqrt{4}}{4\pmf} - \dfrac{4!}{\sqrt{4}}$
Steve Wilson, 5/24
Lawrence, KS
1739 (5.4)
$\dfrac{\coth\ln\coth\arcosh\sqrt{4} - 44\pmf}{4\pmf}$
Steve Wilson, 5/24
Lawrence, KS
1740 (3.8)
$\dfrac{(4 + \sqrt{4})! - 4!}{.4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1741 (5.6)
$\dfrac{\coth\ln\coth\arcosh\sqrt{4}}{4\pmf} - \dfrac{4}{.\overline{4}}$
Steve Wilson, 5/24
Lawrence, KS
1742 (5.2)
$\dfrac{\coth\ln\coth\arcosh\sqrt{4}}{4\pmf} - 4 - 4$
Steve Wilson, 5/24
Lawrence, KS
1743 (5.6)
$\dfrac{\coth\ln\coth\arcosh\sqrt{4} - (4! + 4)\pmf}{4\pmf}$
Steve Wilson, 5/24
Lawrence, KS
1744 (3.8)
$\sqrt[\sqrt{4\%}]{4} + (4 + \sqrt{4})!$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1745 (5.6)
$\dfrac{\coth\ln\coth\arcosh\sqrt{4}}{4\pmf} - \dfrac{\sqrt{4}}{.4}$
Steve Wilson, 5/24
Lawrence, KS
1746 (4.0)
$\dfrac{4 + 4 - 4!\%}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1747 (5.6)
$\dfrac{\coth\ln\coth\arcosh\sqrt{4}}{4\pmf} - \log\left(\dfrac{4}{4\pmf}\right)$
Steve Wilson, 6/24
Lawrence, KS
1748 (4.2)
$\dfrac{4 + \sqrt{4\%}}{4!\%\%} - \sqrt{4}$
Steve Wilson, 11/09
Raytown, MO
1749 (5.2)
$\dfrac{\coth\ln\coth\arcosh\sqrt{4}}{4\pmf} - \dfrac44$
Steve Wilson, 5/24
Lawrence, KS
1750 (3.4)
$\dfrac{4! + 4}{4 \times 4\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1751 (5.2)
$\dfrac{\coth\ln\coth\arcosh\sqrt{4}}{4\pmf} + \dfrac44$
Steve Wilson, 5/24
Lawrence, KS
1752 (4.0)
$\left( \dfrac{4}{.\overline{4}\%} - 4! \right) \times \sqrt{4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1753 (5.6)
$\dfrac{\coth\ln\coth\arcosh\sqrt{4}}{4\pmf} + \log\left(\dfrac{4}{4\pmf}\right)$
Steve Wilson, 6/24
Lawrence, KS
1754 (4.0)
$\dfrac{4 + \sqrt{4\%}}{4!\%\%} + 4$
Steve Wilson, 11/09
Raytown, MO
1755 (4.0)
$\dfrac{4 + 4 - \sqrt{4\%}}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1756 (4.2)
$\dfrac{\sqrt{.\overline{4}}}{.\overline{4}\pmf} + 4^4$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1757 (5.6)
$\dfrac{\coth\ln\coth\arcosh\sqrt{4} + (4! + 4)\pmf}{4\pmf}$
Steve Wilson, 5/24
Lawrence, KS
1758 (5.6)
$\dfrac{\coth\ln 4 + 4\%}{\left(\sqrt{.\overline{4}}\right)\pmf} - \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1759 (5.6)
$\dfrac{\coth\ln\coth\arcosh\sqrt{4}}{4\pmf} + \dfrac{4}{.\overline{4}}$
Steve Wilson, 5/24
Lawrence, KS
1760 (3.8)
$\dfrac{4.4}{\left(\sqrt{\sqrt{4^{-4}}}\right)\%}$
Steve Wilson, 11/09
Raytown, MO
  1761 (5.4)
$\dfrac{\coth\ln\coth\arcosh\sqrt{4} + 44\pmf}{4\pmf}$
Steve Wilson, 5/24
Lawrence, KS
1762 (5.6)
$\dfrac{\coth\ln 4 + 4\%}{\left(\sqrt{.\overline{4}}\right)\pmf} + \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1763 (5.6)
$\coth\ln\coth\arcsch(4\%) + \sqrt{4^{4/.\overline{4}}}$
Steve Wilson, 5/24
Lawrence, KS
1764 (3.4)
$\sqrt{(44 - \sqrt{4})^4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1765 (4.2)
$\dfrac{4 + (4! - .4)\%}{4!\%\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1766 (5.2)
$\dfrac{4! - .4}{(\csch\ln\sqrt{4})\%} - 4$
Steve Wilson, 5/24
Lawrence, KS
1767 (5.2)
$\dfrac{4! - 44\%}{(\csch\ln\sqrt{4})\%}$
Steve Wilson, 5/24
Lawrence, KS
1768 (5.2)
$\dfrac{4!}{(\csch\ln\sqrt{4})\%} - \sqrt[.4]{4}$
Steve Wilson, 5/24
Lawrence, KS
1769 (5.6)
$\dfrac{4!}{(\csch\ln\sqrt{4})\%} - \cosh(\sqrt{4} \times \arcosh 4)$
Steve Wilson, 5/24
Lawrence, KS
1770 (4.2)
$\dfrac{4! - .4}{\left(\sqrt{4 \times .\overline{4}} \right)\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1771 (5.2)
$\dfrac{\sinh\ln\sqrt{4} - 4\%}{4\%\%} - 4$
Steve Wilson, 5/24
Lawrence, KS
1772 (5.2)
$\dfrac{4!}{(\csch\ln\sqrt{4})\%} - 4! - 4$
Steve Wilson, 5/24
Lawrence, KS
1773 (5.4)
$\dfrac{\sinh\ln\sqrt{4} - 4\%}{4\%\%} - \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1774 (4.2)
$\dfrac{4 + \sqrt{4\%}}{4!\%\%} + 4!$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1775 (4.2)
$\dfrac{4 - \dfrac{\sqrt{4\%}}{.\overline{4}}}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1776 (2.0)
$444 \times 4$
Darren Boss, 2/03
Shawnee, KS
1777 (5.4)
$\dfrac{\sinh\ln\sqrt{4} - 4\%}{4\%\%} + \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1778 (4.4)
$\dfrac{4 - .\overline{4} + .\overline{4}\pmf}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1779 (5.2)
$\dfrac{\sinh\ln\sqrt{4} - 4\%}{4\%\%} + 4$
Steve Wilson, 5/24
Lawrence, KS
1780 (3.6)
$\dfrac{4 - 44\%}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1781 (5.4)
$\dfrac{4! - \sqrt{4\%}}{(\csch\ln\sqrt{4})\%} - 4$
Steve Wilson, 5/24
Lawrence, KS
1782 (4.0)
$(4 - 4\%) \times \dfrac{\sqrt{4}}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1783 (5.6)
$\dfrac{4! - \sqrt{4\%}}{(\csch\ln\sqrt{4})\%} - \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1784 (3.8)
$4 \times \left( \dfrac{\sqrt{4}}{.\overline{4}\%} - 4 \right)$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1785 (4.4)
$\dfrac{4! - \sqrt{4\%}}{\left(\sqrt{4 \times .\overline{4}} \right)\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1786 (5.4)
$\dfrac{4!}{(\csch\ln\sqrt{4})\%} - (\antilog 4)\pm - 4$
Steve Wilson, 5/24
Lawrence, KS
1787 (5.6)
$\dfrac{4! - \sqrt{4\%}}{(\csch\ln\sqrt{4})\%} + \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1788 (4.0)
$\dfrac{4 - .4 - 4!\pmf}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1789 (5.4)
$\dfrac{4! - \sqrt{4\%}}{(\csch\ln\sqrt{4})\%} + 4$
Steve Wilson, 5/24
Lawrence, KS
1790 (3.6)
$\dfrac{(4 + \sqrt{4})! - 4}{.4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1791 (2.8)
$\dfrac{4 + 4 - 4\%}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1792 (3.6)
$(4 + 4)! \times 4.\overline{4}\%$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1793 (5.2)
$\dfrac{4! - 4\%}{(\csch\ln\sqrt{4})\%} - 4$
Steve Wilson, 5/24
Lawrence, KS
1794 (4.2)
$\dfrac{\dfrac{4!}{(\sqrt{4})\%} - 4}{\sqrt{.\overline{4}}}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1795 (3.8)
$\dfrac{(4 + \sqrt{4})! - \sqrt{4}}{.4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1796 (2.6)
$\dfrac{4 + 4}{.\overline{4}\%} - 4$
Steve Wilson, 11/09
Raytown, MO
1797 (4.2)
$\dfrac{4! - 4\%}{\left( \sqrt{4 \times .\overline{4}} \right)\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1798 (3.8)
$\dfrac{4 + 4}{.\overline{4}\%} - \sqrt{4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1799 (3.8)
$\dfrac{(4 + \sqrt{4})! - .4}{.4}$
Steve Wilson, 11/09
Raytown, MO
1800 (2.6)
$\dfrac{4 + 4}{.\overline{44}\%}$
David Barksdale, 3/09
Kirkland, WA
  1801 (3.8)
$\dfrac{(4 + \sqrt{4})! + .4}{.4}$
Steve Wilson, 11/09
Raytown, MO
1802 (3.8)
$\dfrac{4 + 4}{.\overline{4}\%} + \sqrt{4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1803 (4.2)
$\dfrac{4! + 4\%}{\left(\sqrt{4 \times .\overline{4}}\right)\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1804 (2.6)
$\dfrac{4 + 4}{.\overline{4}\%} + 4$
Steve Wilson, 11/09
Raytown, MO
1805 (3.8)
$\dfrac{(4 + \sqrt{4})! + \sqrt{4}}{.4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1806 (4.2)
$\dfrac{\dfrac{4!}{(\sqrt{4})\%} + 4}{\sqrt{.\overline{4}}}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1807 (5.2)
$\dfrac{4! + 4\%}{(\csch\ln\sqrt{4})\%} + 4$
Steve Wilson, 5/24
Lawrence, KS
1808 (3.8)
$\left( \dfrac{4}{.\overline{4}\%} + 4 \right) \times \sqrt{4}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1809 (2.8)
$\dfrac{4 + 4 + 4\%}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1810 (3.6)
$\dfrac{(4 + \sqrt{4})! + 4}{.4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1811 (5.4)
$\dfrac{4! + \sqrt{4\%}}{(\csch\ln\sqrt{4})\%} - 4$
Steve Wilson, 5/24
Lawrence, KS
1812 (4.0)
$\dfrac{4 - .4 + 4!\pmf}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1813 (5.6)
$\dfrac{4! + \sqrt{4\%}}{(\csch\ln\sqrt{4})\%} - \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1814 (4.0)
$\dfrac{\left(\dfrac{4}{.4} \right)!\pmf}{\sqrt{4}} - .4$
Steve Wilson, 11/09
Raytown, MO
1815 (4.4)
$\dfrac{4! + \sqrt{4\%}}{\left(\sqrt{4 \times .\overline{4}} \right)\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1816 (3.8)
$4 \times \left( \dfrac{\sqrt{4}}{.\overline{4}\%} + 4 \right)$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1817 (5.6)
$\dfrac{4! + \sqrt{4\%}}{(\csch\ln\sqrt{4})\%} + \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1818 (4.0)
$(4 + 4\%) \times \dfrac{\sqrt{4}}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1819 (5.4)
$\dfrac{4! + \sqrt{4\%}}{(\csch\ln\sqrt{4})\%} + 4$
Steve Wilson, 5/24
Lawrence, KS
1820 (3.8)
$\dfrac{4 - .4 + 4\%}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1821 (4.4)
$\dfrac{\dfrac{\sqrt{4}}{4!\%\%} - 4!}{.\overline{4}}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1822 (5.4)
$\dfrac{4!}{(\csch\ln\sqrt{4})\%} + 4! - \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1823 (5.0)
$\cosh(4 \times \arcosh 4) - \antilog\sqrt{4} + \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1824 (3.8)
$\dfrac{4 + 4}{.\overline{4}\%} + 4!$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1825 (3.8)
$\dfrac{44 - \sqrt{4\%}}{4!\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1826 (4.8)
$\dfrac{.\overline{4} - .\overline{4}\pmf}{4!\%\pmf} - 4!$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1827 (5.4)
$\dfrac{\sinh\ln\sqrt{4}}{4\%\%} - 4! - 4!$
Steve Wilson, 5/24
Lawrence, KS
1828 (5.2)
$\dfrac{4!}{(\csch\ln\sqrt{4})\%} + 4! + 4$
Steve Wilson, 5/24
Lawrence, KS
1829 (5.4)
$\dfrac{4! - .4}{.4 \times \tanh\ln\coth\arcosh 4}$
Steve Wilson, 5/24
Lawrence, KS
1830 (4.2)
$\dfrac{4! + .4}{\left(\sqrt{4 \times .\overline{4}} \right)\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1831 (5.0)
$\dfrac{\sinh\ln\sqrt{4}}{4\%\%} - 44$
Steve Wilson, 5/24
Lawrence, KS
1832 (5.2)
$\dfrac{4!}{(\csch\ln\sqrt{4})\%} + \sqrt[.4]{4}$
Steve Wilson, 5/24
Lawrence, KS
1833 (5.2)
$\dfrac{4! + 44\%}{(\csch\ln\sqrt{4})\%}$
Steve Wilson, 5/24
Lawrence, KS
1834 (4.0)
$\dfrac{44}{4!\pmf} + \sqrt{.\overline{4}}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1835 (3.6)
$\dfrac{44 + 4\%}{4!\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1836 (4.0)
$\dfrac{4 \times (\sqrt{4} + 4\%)}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1837 (5.8)
$\dfrac{4!}{(\csch\ln\sqrt{4})\%} + \coth\ln\coth\arsinh 4 + 4$
Steve Wilson, 5/24
Lawrence, KS
1838 (5.8)
$\dfrac{\sinh\ln\sqrt{4}}{4\%\%} - \coth\ln\coth\arsinh 4 - 4$
Steve Wilson, 5/24
Lawrence, KS
1839 (5.6)
$\dfrac{4! + \sqrt{4\%}}{(\csch\ln\sqrt{4})\%} + 4!$
Steve Wilson, 5/24
Lawrence, KS
1840 (3.8)
$\dfrac{4 - (\sqrt[.4]{4})\%}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1841 (5.6)
$\dfrac{\sinh\ln\sqrt{4}}{4\%\%} - 4! - (\antilog 4)\pm$
Steve Wilson, 5/24
Lawrence, KS
1842 (5.6)
$\dfrac{4! + 4!\%}{(\csch\ln\sqrt{4})\%} + 4!$
Steve Wilson, 5/24
Lawrence, KS
1843 (5.2)
$\dfrac{\sinh\ln\sqrt{4}}{4\%\%} - \sqrt[.4]{4}$
Steve Wilson, 5/24
Lawrence, KS
1844 (5.0)
$\dfrac{4!}{(\csch\ln\sqrt{4})\%} + 44$
Steve Wilson, 5/24
Lawrence, KS
1845 (4.0)
$\dfrac{4 + 4 + \sqrt{4\%}}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1846 (4.6)
$\dfrac{.\overline{4} - .\overline{4}\pmf}{4!\%\pmf} - 4$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1847 (4.8)
$(\tan\arcsec\sqrt{44})^4 - \sqrt{4}$
Steve Wilson, 8/24
Lawrence, KS
1848 (4.0)
$\left( \dfrac{4}{.\overline{4}\%} + 4! \right) \times \sqrt{4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1849 (4.2)
$\sqrt{\left(\dfrac{\sqrt{4}}{.\overline{4}\%} - \sqrt{4} \right)^4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1850 (3.4)
$\dfrac{44.4}{4!\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1851 (4.4)
$\dfrac{\sqrt{4}}{\left( .4 + \sqrt{.\overline{4}} \right)\pmf} - 4!$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1852 (4.8)
$\dfrac{.\overline{4} - .\overline{4}\pmf}{4!\%\pmf} + \sqrt{4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1853 (4.6)
$(\tan\arcsec\sqrt{44})^4 + 4$
Steve Wilson, 8/24
Lawrence, KS
1854 (4.0)
$\dfrac{4 + 4 + 4!\%}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1855 (5.2)
$\dfrac{\sinh\ln\sqrt{4} - (4 + 4)\pmf}{4\%\%}$
Steve Wilson, 5/24
Lawrence, KS
1856 (4.0)
$\dfrac{4 - 4!\%}{(\sqrt{4})\pmf} - 4!$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1857 (5.8)
$\dfrac{\sinh\ln\sqrt{4}}{4\%\%} - \dfrac{4!}{\csch\ln\sqrt{4}}$
Steve Wilson, 5/24
Lawrence, KS
1858 (5.8)
$\dfrac{\sinh\ln\sqrt{4}}{4\%\%} - \cosh(4 \times \arcosh\sqrt{\sqrt{4}})$
Steve Wilson, 5/24
Lawrence, KS
1859 (5.0)
$\dfrac{\sinh\ln\sqrt{4}}{4\%\%} - 4 \times 4$
Steve Wilson, 5/24
Lawrence, KS
1860 (3.8)
$\dfrac{4 - (4! + 4)\%}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1861 (4.8)
$\cosh(4 \times \arcosh 4) - \dfrac{4!}{.4}$
Steve Wilson, 5/24
Lawrence, KS
1862 (5.8)
$\dfrac{\antilog\sqrt{4} - \sqrt{4}}{\tanh\ln\sqrt{\dfrac{.\overline{4}}{.4}}}$
Steve Wilson, 5/24
Lawrence, KS
1863 (5.4)
$\dfrac{\sinh\ln\sqrt{4} - 4\pmf}{4\%\%} - \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1864 (5.2)
$\dfrac{\sinh\ln\sqrt{4} - 4.4\pmf}{4\%\%}$
Steve Wilson, 5/24
Lawrence, KS
1865 (4.6)
$\dfrac{\dfrac{\sqrt{4}}{.\overline{4}} - 4!\pmf}{4!\%\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1866 (4.2)
$\dfrac{\dfrac{\sqrt{4}}{4!\%\%} - 4}{.\overline{4}}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1867 (5.4)
$\dfrac{\sinh\ln\sqrt{4} - 4\pmf}{4\%\%} + \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1868 (4.2)
$\dfrac{4 - 4!\% - 4!\pmf}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1869 (5.2)
$\dfrac{\sinh\ln\sqrt{4}}{4\%\%} - \dfrac{4!}{4}$
Steve Wilson, 5/24
Lawrence, KS
1870 (4.0)
$\dfrac{4 - (4! + \sqrt{4})\%}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1871 (4.2)
$\dfrac{\sqrt{4}}{\left(.4 + \sqrt{.\overline{4}} \right)\pmf} - 4$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1872 (3.6)
$\dfrac{4 - 4^4\pmf}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1873 (4.4)
$\dfrac{\sqrt{4}}{\left(.4 + \sqrt{.\overline{4}} \right)\pmf} - \sqrt{4}$
Steve Wilson, 11/09
Raytown, MO
1874 (4.4)
$\dfrac{\dfrac{\sqrt{4}}{.\overline{4}\%\%} - 4!}{4!}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1875 (3.8)
$4! \times \sqrt{4} \times .4^{-4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1876 (3.8)
$\dfrac{4 - 4!\%}{(\sqrt{4})\pmf} - 4$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1877 (4.4)
$\dfrac{\sqrt{4}}{\left(.4 + \sqrt{.\overline{4}} \right)\pmf} + \sqrt{4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1878 (4.0)
$\dfrac{4 - 4!\% - 4\pmf}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1879 (4.2)
$\dfrac{\sqrt{4}}{\left(.4 + \sqrt{.\overline{4}} \right)\pmf} + 4$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1880 (3.8)
$(4 - 4!\%) \times \dfrac{\sqrt{4}}{4\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1881 (4.2)
$\dfrac{4 - (4! - \sqrt{4\%})\%}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1882 (4.0)
$\dfrac{4 - 4!\% + 4\pmf}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1883 (5.4)
$\dfrac{\sinh\ln\sqrt{4} + 4\pmf}{4\%\%} - \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1884 (3.8)
$\dfrac{4 - 4!\%}{(\sqrt{4})\pmf} + 4$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1885 (4.6)
$\dfrac{\left( \dfrac{\sqrt{4}}{.\overline{4}\pmf} + 4! \right)\%}{4!\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1886 (5.2)
$\dfrac{\sinh\ln\sqrt{4} + 4.4\pmf}{4\%\%}$
Steve Wilson, 5/24
Lawrence, KS
1887 (5.4)
$\dfrac{\sinh\ln\sqrt{4} + 4\pmf}{4\%\%} + \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1888 (4.6)
$\dfrac{(4! - .4)\%}{\left( \sqrt[-\sqrt{.\overline{4}}]{4} \right)\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1889 (4.6)
$\cosh(4 \times \arcosh 4) - \sqrt[.4]{4}$
Steve Wilson, 5/24
Lawrence, KS
1890 (2.6)
$\dfrac{4.4 + 4}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1891 (4.4)
$\dfrac{.\overline{4} + .4 - 4\pmf}{.\overline{4}\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1892 (4.2)
$\dfrac{4 - 4!\% + 4!\pmf}{(\sqrt{4})\pmf}$
Steve Wilson, 5/10
Raytown, MO
1893 (4.6)
$\cosh(4 \times \arcosh 4) - 4! - 4$
Steve Wilson, 9/23
Lawrence, KS
1894 (5.2)
$\cosh(4 \times \arcosh 4) - \cot\arctan(4\%) - \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1895 (4.8)
$\cosh(4 \times \arcosh 4) - 4! - \sqrt{4}$
Steve Wilson, 9/23
Lawrence, KS
1896 (4.0)
$4 \times \left( \dfrac{\sqrt{4}}{.\overline{4}\%} + 4! \right)$
Steve Wilson, 5/10
Raytown, MO
1897 (4.8)
$\cosh(4 \times \arcosh 4) - (\sqrt{4 \times 4})!$
Steve Wilson, 9/23
Lawrence, KS
1898 (4.0)
$\dfrac{4 - \sqrt{4\%} - 4\pmf}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1899 (4.2)
$\dfrac{4 - \sqrt{4\%} - (\sqrt{4})\pmf}{(\sqrt{4})\pmf}$
Steve Wilson, 5/10
Raytown, MO
1900 (2.6)
$\dfrac{4 + 4 - .4}{.4\%}$
Steve Wilson, 11/09
Raytown, MO
  1901 (4.2)
$\dfrac{4 - \sqrt{4\%} + (\sqrt{4})\pmf}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1902 (4.0)
$\dfrac{4 - \sqrt{4\%} + 4\pmf}{(\sqrt{4})\pmf}$
Steve Wilson, 11/09
Raytown, MO
1903 (5.2)
$\dfrac{\sinh\ln\sqrt{4}}{4\%\%} + 4! + 4$
Steve Wilson, 5/24
Lawrence, KS
1904 (3.6)
$4 \times \left( \dfrac{\sqrt{4}}{4\pmf} - 4! \right)$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1905 (4.4)
$\cosh(4 \times \arcosh 4) - 4 \times 4$
Steve Wilson, 9/23
Lawrence, KS
1906 (5.0)
$\cosh(4 \times \arcosh 4) - \dfrac{\arcsec\sqrt{4}}{4^\circ}$
Steve Wilson, 5/24
Lawrence, KS
1907 (4.8)
$\cosh(4 \times \arcosh 4) - (\antilog 4)\pm - 4$
Steve Wilson, 5/24
Lawrence, KS
1908 (4.2)
$(4 + 4!\pm) \times \dfrac{\sqrt{4}}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1909 (4.4)
$\dfrac{.\overline{4} + .4 + 4\pmf}{.\overline{4}\pmf}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1910 (4.4)
$\dfrac{.\overline{4} \times \sqrt{4} - 4\%}{.\overline{4}\pmf}$
Steve Wilson, 11/09
Raytown, MO
  1911 (4.6)
$\cosh(4 \times \arcosh 4) - \dfrac{4}{.4}$
Steve Wilson, 9/23
Lawrence, KS
1912 (3.4)
$\sqrt{44^4} - 4!$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1913 (4.4)
$\cosh(4 \times \arcosh 4) - 4 - 4$
Steve Wilson, 9/23
Lawrence, KS
1914 (5.2)
$\cosh(4 \times \arcosh 4) - \cosh(\sqrt{4} \times \arcosh\sqrt{4})$
Steve Wilson, 5/24
Lawrence, KS
1915 (4.6)
$\cosh(4 \times \arcosh 4) - \dfrac{4!}{4}$
Steve Wilson, 9/23
Lawrence, KS
1916 (4.0)
$\dfrac{(4 + 4)!\pm - \sqrt{4}\phantom8}{(\sqrt{4}) \%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1917 (4.6)
$\cosh(4 \times \arcosh 4) - \sqrt{4 \times 4}$
Steve Wilson, 9/23
Lawrence, KS
1918 (4.6)
$\dfrac{4!\%}{\left(\sqrt[-\sqrt{.\overline{4}}]{4} \right)\pmf} - \sqrt{4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1919 (4.6)
$\cosh(4 \times \arcosh 4) - \dfrac{4}{\sqrt{4}}$
Steve Wilson, 9/23
Lawrence, KS
1920 (3.4)
$(4! - 4) \times 4 \times 4!$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1921 (4.4)
$\dfrac44 \times \cosh(4 \times \arcosh 4)$
Steve Wilson, 9/23
Lawrence, KS
1922 (4.4)
$\cosh(4 \times \arcosh 4) + \dfrac44$
Steve Wilson, 9/23
Lawrence, KS
1923 (4.6)
$\cosh(4 \times \arcosh 4) + \dfrac{4}{\sqrt{4}}$
Steve Wilson, 9/23
Lawrence, KS
1924 (4.0)
$\sqrt[\sqrt{4\%}]{4} + \dfrac{4}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1925 (3.4)
$\dfrac{\dfrac{4}{.\overline{4}} - .\overline{4}}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1926 (4.8)
$\cosh(4 \times \arcosh 4) + \dfrac{\sqrt{4}}{.4}$
Steve Wilson, 9/23
Lawrence, KS
1927 (4.6)
$\cosh(4 \times \arcosh 4) + \dfrac{4!}{4}$
Steve Wilson, 9/23
Lawrence, KS
1928 (5.2)
$\cosh(4 \times \arcosh 4) + \cosh(\sqrt{4} \times \arcosh\sqrt{4})$
Steve Wilson, 5/24
Lawrence, KS
1929 (4.4)
$4 \times \left( \left( \sqrt{.\overline{4}\%^{-4}} \right) \% -4! \right)$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1930 (4.8)
$\cosh(4 \times \arcosh 4) + \dfrac{4}{.\overline{4}}$
Steve Wilson, 9/23
Lawrence, KS
  1931 (4.6)
$\cosh(4 \times \arcosh 4) + \dfrac{4}{.4}$
Steve Wilson, 9/23
Lawrence, KS
1932 (3.2)
$\sqrt{44^4} - 4$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1933 (4.6)
$\sqrt{(\sec\arctan 44)^4} - 4$
Steve Wilson, 8/24
Lawrence, KS
1934 (3.4)
$\sqrt{44^4} - \sqrt{4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1935 (3.2)
$\dfrac{\dfrac{4}{.\overline{4}} - .4}{.\overline{4}\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1936 (2.0)
$44 \times 44$
Steve Barker, 1/03
Stilwell, KS
1937 (4.4)
$\cosh(4 \times \arcosh 4) + 4 \times 4$
Steve Wilson, 9/23
Lawrence, KS
1938 (3.4)
$\sqrt{44^4} + \sqrt{4}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1939 (4.8)
$\sqrt{(\sec\arctan 44)^4} + \sqrt{4}$
Steve Wilson, 8/24
Lawrence, KS
1940 (3.2)
$\sqrt{44^4} + 4$
Paolo Pellegrini, 10/09
Martina Franca, Italy
  1941 (4.6)
$\cosh(4 \times \arcosh 4) + 4! - 4$
Steve Wilson, 9/23
Lawrence, KS
1942 (5.0)
$\cosh(4 \times \arcosh 4) + \cot\arctan(4\%) - 4$
Steve Wilson, 5/24
Lawrence, KS
1943 (4.8)
$\cosh(4 \times \arcosh 4) + 4! - \sqrt{4}$
Steve Wilson, 9/23
Lawrence, KS
1944 (3.8)
$4^4 \times \sqrt[-.4]{.\overline{4}}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1945 (4.8)
$\cosh(4 \times \arcosh 4) + (\sqrt{4 \times 4})!$
Steve Wilson, 9/23
Lawrence, KS
1946 (4.0)
$\dfrac{4}{(\sqrt{4})\pmf} - \dfrac{4!}{.\overline{4}}$
Steve Wilson, 11/09
Raytown, MO
1947 (4.8)
$\cosh(4 \times \arcosh 4) + 4! + \sqrt{4}$
Steve Wilson, 9/23
Lawrence, KS
1948 (4.4)
$\dfrac{\left( \sqrt{\sqrt{4^{4!}}}\right)\% - \sqrt{4}}{(\sqrt{4})\%}$
Paolo Pellegrini, 10/09
Martina Franca, Italy
1949 (4.6)
$\cosh(4 \times \arcosh 4) + 4! + 4$
Steve Wilson, 9/23
Lawrence, KS
1950 (3.8)
$\dfrac{4}{(\sqrt{4})\pmf} - \dfrac{\sqrt{4}}{4\%}$
Steve Wilson, 11/09
Raytown, MO
  1951 (5.2)
$\cosh(4 \times \arcosh 4) + \sqrt{\dfrac{4}{.\overline{4}\%}}$
Steve Wilson, 5/24
Lawrence, KS
1952 (3.8)
$\dfrac{4}{(\sqrt{4})\pmf} - 4! - 4!$
Steve Wilson, 11/09
Raytown, MO
1953 (4.6)
$\cosh(4 \times \arcosh 4) + \sqrt[.4]{4}$
Steve Wilson, 5/24
Lawrence, KS
1954 (5.0)
$\cosh(4 \times \arcosh 4) + \cosh(\sqrt{4} \times \arsinh 4)$
Steve Wilson, 5/24
Lawrence, KS
1955 (4.0)
$\dfrac{4 - \dfrac{4\%}{.\overline{4}}}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1956 (3.4)
$\dfrac{4}{(\sqrt{4})\pmf} - 44$
Steve Wilson, 11/09
Raytown, MO
1957 (5.2)
$\cosh(4 \times \arcosh 4) + \dfrac{4!}{\sqrt{.\overline{4}}}$
Steve Wilson, 5/24
Lawrence, KS
1958 (5.2)
$\cosh(4 \times \arcosh 4) + \coth\ln\coth\arsinh 4 + 4$
Steve Wilson, 5/24
Lawrence, KS
1959 (4.8)
$\sqrt{(\tan\arcsec 44)^4} + 4!$
Steve Wilson, 8/24
Lawrence, KS
1960 (3.4)
$\sqrt{44^4} + 4!$
Steve Wilson, 11/09
Raytown, MO
  1961 (4.8)
$\cosh(4 \times \arcosh 4) + (\antilog 4) \times 4\pm$
Steve Wilson, 5/24
Lawrence, KS
1962 (5.8)
$\dfrac{4}{\left(\sqrt{4}\right)\pmf} - \cot\arctan((\cot\arctan(.4))\%) + \sqrt{4}$
Steve Wilson, 5/24
Lawrence, KS
1963 (5.2)
$\dfrac{4}{\left(\sqrt{4}\right)\pmf} - \coth\ln\coth\arsinh 4 - 4$
Steve Wilson, 5/24
Lawrence, KS
1964 (4.0)
$\dfrac{4 - 4!\pmf}{(\sqrt{4})\pmf} - 4!$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1965 (4.4)
$\dfrac{ \left(4 + \dfrac{\sqrt{4}}{4!\pmf} \right)\%}{.\overline{4}\pmf}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1966 (4.0)
$\dfrac{4 - (\sqrt{4})\%}{(\sqrt{4})\pmf} - 4!$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1967 (5.0)
$\dfrac{4}{\left(\sqrt{4}\right)\pmf} - \cosh(\sqrt{4} \times \arsinh 4)$
Steve Wilson, 5/24
Lawrence, KS
1968 (3.6)
$\dfrac{4}{(\sqrt{4})\pmf} - \sqrt[.4]{4}$
Steve Wilson, 11/09
Raytown, MO
1969 (4.8)
$\cosh(4 \times \arcosh 4) + 4! + 4!$
Steve Wilson, 5/24
Lawrence, KS
1970 (3.8)
$\dfrac{4 - \dfrac{4!\%}{4}}{(\sqrt{4})\pmf}$
Steve Wilson, 11/09
Raytown, MO
  1971 (4.2)
$\dfrac{\dfrac{4}{.\overline{4}\%} - 4!}{.\overline{4}}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1972 (3.6)
$\dfrac{4}{(\sqrt{4})\pmf} - 4! - 4$
Steve Wilson, 11/09
Raytown, MO
1973 (4.2)
$\dfrac{4 - \dfrac{4!\pmf}{.\overline{4}}}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1974 (3.8)
$\dfrac{4}{(\sqrt{4})\pmf} - 4! - \sqrt{4}$
Steve Wilson, 11/09
Raytown, MO
1975 (3.8)
$\dfrac{4 - \dfrac{\sqrt{4\%}}{4}}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1976 (3.4)
$\dfrac{4 + 4}{4\pmf} - 4!$
Steve Wilson, 11/09
Raytown, MO
1977 (4.0)
$\dfrac{4 + (\sqrt{4})\pmf}{(\sqrt{4})\pmf} - 4!$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1978 (3.8)
$\dfrac{4}{(\sqrt{4})\pmf} - 4! + \sqrt{4}$
Steve Wilson, 11/09
Raytown, MO
1979 (4.0)
$\dfrac{4 - (4 + \sqrt{4\%})\%}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1980 (3.6)
$\dfrac{4}{(\sqrt{4})\pmf} - 4! + 4$
Steve Wilson, 11/09
Raytown, MO
  1981 (4.0)
$\dfrac{4 - (4 - \sqrt{4\%})\%}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1982 (3.8)
$\dfrac{4 - 4\%}{(\sqrt{4})\pmf} + \sqrt{4}$
Steve Wilson, 11/09
Raytown, MO
1983 (5.2)
$\dfrac{4}{\left(\sqrt{4}\right)\pmf} - \cosh(4 \times \arcosh\sqrt{\sqrt{4}})$
Steve Wilson, 5/24
Lawrence, KS
1984 (3.4)
$4 \times \left( \dfrac{\sqrt{4}}{4\pmf} - 4 \right)$
Steve Wilson, 11/09
Raytown, MO
1985 (4.2)
$\dfrac{4 - \left(\sqrt{\dfrac{4}{.\overline{4}}}\right)\%}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1986 (3.8)
$\dfrac{4 - (\sqrt{4})\%}{(\sqrt{4})\pmf} - 4$
Steve Wilson, 11/09
Raytown, MO
1987 (4.0)
$\dfrac{4 - (4! + \sqrt{4})\pmf}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1988 (3.8)
$\dfrac{4}{(\sqrt{4})\pmf} - \dfrac{4!}{\sqrt{4}}$
Steve Wilson, 11/09
Raytown, MO
1989 (4.0)
$\dfrac{4 - (4! - \sqrt{4})\pmf}{(\sqrt{4})\pmf}$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1990 (2.6)
$\dfrac{4 + 4 - 4\%}{.4\%}$
Steve Wilson, 11/09
Raytown, MO
  1991 (3.8)
$\dfrac{4}{(\sqrt{4})\pmf} - \dfrac{4}{.\overline{4}}$
Steve Wilson, 11/09
Raytown, MO
1992 (3.4)
$\dfrac{4}{(\sqrt{4})\pmf} - 4 - 4$
Steve Wilson, 11/09
Raytown, MO
1993 (5.2)
$\dfrac{4}{\left(\sqrt{4}\right)\pmf} - \cosh(\sqrt{4} \times \arcosh\sqrt{4})$
Steve Wilson, 5/24
Lawrence, KS
1994 (3.6)
$\dfrac{4}{(\sqrt{4})\pmf} - 4 - \sqrt{4}$
Steve Wilson, 11/09
Raytown, MO
1995 (3.8)
$\dfrac{4}{(\sqrt{4})\pmf} - \dfrac{\sqrt{4}}{.4}$
Steve Wilson, 11/09
Raytown, MO
1996 (2.4)
$\dfrac{4 + 4}{.4\%} - 4$
Steve Wilson, 11/09
Raytown, MO
1997 (3.8)
$\dfrac{4 + (\sqrt{4})\pmf}{(\sqrt{4})\pmf} - 4$
Paolo Pellegrini, 5/10
Martina Franca, Italy
1998 (3.6)
$\dfrac{4}{(\sqrt{4})\pmf} - 4 + \sqrt{4}$
Steve Wilson, 11/09
Raytown, MO
1999 (2.8)
$\dfrac{4 + 4 - .4\%}{.4\%}$
Steve Wilson, 11/09
Raytown, MO
2000 (2.6)
$\dfrac{4 \times 4}{(.4 + .4)\%}$
Steve Wilson, 11/09
Raytown, MO

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201-1600), Page 5 (1601-2000), Page 6 (2001-2400), Page 7 (2401-2800), Page 8 (2801-3200), Page 9 (3201-3600), Page 10 (3601-4000), Page 11 (4001+).