\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator {\arsech} {arsech} \)
Using one copy each of the digits 6, 7, 8, and 9, and any standard operations, create each of the positive integers. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.
Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.
Page 1 (1-400), Page 2 (401-800), Page 3 (801-4000), Page 11 (4001+).
1 (1.0) $(9 - 8) \times (7 - 6)$ Steve Wilson, 6/14 Lawrence, KS |
2 (1.0) $9 - 8 + 7 - 6$ Steve Wilson, 6/14 Lawrence, KS |
3 (1.0) $(9 - 6) \times (8 - 7)$ Steve Wilson, 6/14 Lawrence, KS |
4 (1.0) $9 + 8 - 7 - 6$ Steve Wilson, 6/14 Lawrence, KS |
5 (1.0) $8 - \dfrac{6}{9 - 7}$ Steve Wilson, 6/14 Lawrence, KS |
6 (2.2) $(9 + 8 - 7) \times .6$ Paolo Pellegrini, 8/14 Martina Franca, Italy |
7 (1.0) $\dfrac{8 + 6}{9 - 7}$ Paolo Pellegrini, 8/14 Martina Franca, Italy |
8 (1.0) $6 + \dfrac{9 + 7}{8}$ Paolo Pellegrini, 8/14 Martina Franca, Italy |
9 (2.0) $78 - 69$ Anthony Alvano, 6/14 Shawnee, KS |
10 (1.0) $8 \times (9 - 7) - 6$ Anthony Alvano, 6/14 Shawnee, KS |
|
11 (1.0) $9 + \dfrac{8 + 6}{7}$ Steve Wilson, 8/14 Lawrence, KS |
12 (1.0) $8 + 6 - 9 + 7$ Anthony Alvano, 6/14 Shawnee, KS |
13 (1.0) $(6 + 7) \times (9 - 8)$ Anthony Alvano, 6/14 Shawnee, KS |
14 (1.0) $9 - 8 + 7 + 6$ Blake Goldstein, 7/14 Leawood, KS |
15 (1.0) $(9 + 6) \times (8 - 7)$ Anthony Alvano, 7/14 Shawnee, KS |
16 (1.0) $9 + 8 - 7 + 6$ Anthony Alvano, 7/14 Shawnee, KS |
17 (1.0) $(9 + 8) \times (7 - 6)$ Blake Goldstein, 7/14 Leawood, KS |
18 (1.0) $9 + 8 + 7 - 6$ Blake Goldstein, 7/14 Leawood, KS |
19 (1.0) $\dfrac{9 \times 8}{6} + 7$ Anthony Alvano, 7/14 Shawnee, KS |
20 (1.0) $6 \times (9 - 7) + 8$ Steve Wilson, 8/14 Lawrence, KS |
|
21 (2.2) $(8.\overline{9} - 6) \times 7$ Paolo Pellegrini, 8/14 Martina Franca, Italy |
22 (1.0) $8 \times (9 - 7) + 6$ Paolo Pellegrini, 8/14 Martina Franca, Italy |
23 (1.0) $7 \times (8 - 6) + 9$ Steve Wilson, 9/14 Lawrence, KS |
24 (1.0) $\dfrac{8 \times 6}{9 - 7}$ Steve Wilson, 9/14 Lawrence, KS |
25 (1.0) $6 \times 7 - 8 - 9$ Kenneth Chapman, 8/14 Santa Paula, CA |
26 (2.0) $\dfrac{78}{9 - 6}$ Steve Wilson, 10/14 Lawrence, KS |
27 (2.2) $\dfrac{6}{8 - \dfrac{7}{.9}}$ Steve Wilson, 10/14 Lawrence, KS |
28 (1.0) $(8 + 6) \times (9 - 7)$ Kenneth Chapman, 8/14 Santa Paula, CA |
29 (1.0) $7 \times (9 - 6) + 8$ Steve Wilson, 9/14 Lawrence, KS |
30 (1.0) $9 + 8 + 7 + 6$ Anthony Alvano, 7/14 Shawnee, KS |
|
31 (1.0) $8 \times (9 - 6) + 7$ Ralph Jeffords, 8/14 Centreville, VA |
32 (1.0) $8 \times 6 - 9 - 7$ Kenneth Chapman, 8/14 Santa Paula, CA |
33 (2.0) $87 - 6 \times 9$ Steve Wilson, 10/14 Lawrence, KS |
34 (2.0) $\dfrac{68}{9 - 7}$ Steve Wilson, 10/14 Lawrence, KS |
35 (1.0) $7 \times (6 + 8 - 9)$ Kenneth Chapman, 9/14 Santa Paula, CA |
36 (1.0) $6 \times (7 + 8 - 9)$ Kenneth Chapman, 8/14 Santa Paula, CA |
37 (2.4) $9 \times 7 \times .6 - .8$ Steve Wilson, 10/14 Lawrence, KS |
38 (2.4) $\dfrac{6}{.9 - .7} + 8$ Ralph Jeffords, 8/14 Centreville, VA |
39 (1.0) $9 \times 6 - 8 - 7$ Kenneth Chapman, 8/14 Santa Paula, CA |
40 (2.0) $96 - 8 \times 7$ Steve Wilson, 7/14 Lawrence, KS |
|
41 (1.0) $6 \times 7 + 8 - 9$ Kenneth Chapman, 9/14 Santa Paula, CA |
42 (1.0) $6 \times 7 \times (9 - 8)$ Steve Wilson, 11/14 Lawrence, KS |
43 (1.0) $6 \times 7 + 9 - 8$ Kenneth Chapman, 9/14 Santa Paula, CA |
44 (1.0) $8 \times \left( 7 - \dfrac96 \right)$ Steve Wilson, 11/14 Lawrence, KS |
45 (1.0) $9 \times (6 + 7 - 8)$ Steve Wilson, 11/14 Lawrence, KS |
46 (1.0) $6 \times 8 + 7 - 9$ Kenneth Chapman, 9/14 Santa Paula, CA |
47 (2.0) $89 - 6 \times 7$ Steve Wilson, 11/14 Lawrence, KS |
48 (1.0) $6 \times (9 - 8 + 7)$ Steve Wilson, 11/14 Lawrence, KS |
49 (1.0) $7 \times 9 - 6 - 8$ Kenneth Chapman, 9/14 Santa Paula, CA |
50 (1.0) $8 \times 6 + 9 - 7$ Steve Wilson, 7/14 Lawrence, KS |
|
51 (1.0) $9 \times \left( 7 - \dfrac86 \right)$ Ralph Jeffords, 12/14 Centreville, VA |
52 (2.0) $78 \times \dfrac69$ Steve Wilson, 12/14 Lawrence, KS |
53 (1.0) $7 \times 8 - 9 + 6$ Kenneth Chapman, 11/14 Santa Paula, CA |
54 (1.0) $6 \times 9 \times (8 - 7)$ Kenneth Chapman, 11/14 Santa Paula, CA |
55 (1.0) $6 \times 9 + 8 - 7$ Kenneth Chapman, 11/14 Santa Paula, CA |
56 (2.0) $98 - 7 \times 6$ Ralph Jeffords, 10/14 Centreville, VA |
57 (2.2) $8.\overline{9} \times 7 - 6$ Ralph Jeffords, 10/14 Centreville, VA |
58 (2.0) $87 \times \dfrac69$ Steve Wilson, 12/14 Lawrence, KS |
59 (1.0) $6 \times 7 + 8 + 9$ Kenneth Chapman, 11/14 Santa Paula, CA |
60 (1.0) $6 \times (9 + 8 - 7)$ Steve Wilson, 7/14 Lawrence, KS |
|
61 (1.0) $7 \times 9 + 6 - 8$ Kenneth Chapman, 10/14 Santa Paula, CA |
62 (2.2) $68.\overline{9} - 7$ Ralph Jeffords, 10/14 Centreville, VA |
63 (1.0) $9 \times (6 - 7 + 8)$ Kenneth Chapman, 12/14 Santa Paula, CA |
64 (1.0) $6 \times 8 + 7 + 9$ Kenneth Chapman, 12/14 Santa Paula, CA |
65 (1.0) $9 \times 7 + 8 - 6$ Blake Goldstein, 7/14 Leawood, KS |
66 (2.0) $67 - 9 + 8$ Ralph Jeffords, 10/14 Centreville, VA |
67 (2.0) $67 \times (9 - 8)$ Kenneth Chapman, 12/14 Santa Paula, CA |
68 (1.0) $8 \times \left( 7 + \dfrac96 \right)$ Kenneth Chapman, 1/15 Santa Paula, CA |
69 (1.0) $6 \times 9 + 7 + 8$ Kenneth Chapman, 12/14 Santa Paula, CA |
70 (2.0) $86 - 9 - 7$ Steve Wilson, 7/14 Lawrence, KS |
|
71 (1.0) $7 \times 8 + 9 + 6$ Kenneth Chapman, 10/14 Santa Paula, CA |
72 (1.0) $9 \times 8 \times (7 - 6)$ Steve Wilson, 12/14 Lawrence, KS |
73 (1.0) $9 \times 8 + 7 - 6$ Steve Wilson, 12/14 Lawrence, KS |
74 (2.4) $67 + 8 - .\overline{9}$ Ralph Jeffords, 11/14 Centreville, VA |
75 (1.0) $9 \times \left( 7 + \dfrac86 \right)$ Steve Wilson, 12/14 Lawrence, KS |
76 (2.0) $76 \times (9 - 8)$ Ralph Jeffords, 11/14 Centreville, VA |
77 (1.0) $7 \times 9 + 6 + 8$ Kenneth Chapman, 1/15 Santa Paula, CA |
78 (2.2) $86 - 7.\overline{9}$ Ralph Jeffords, 11/14 Centreville, VA |
79 (2.4) $86 \times .\overline{9} - 7$ Ralph Jeffords, 11/14 Centreville, VA |
80 (1.0) $8 \times (9 + 7 - 6)$ Steve Wilson, 7/14 Lawrence, KS |
|
81 (1.0) $9 \times (8 + 7 - 6)$ Kenneth Chapman, 10/14 Santa Paula, CA |
82 (2.2) $87.\overline{9} - 6$ Ralph Jeffords, 12/14 Centreville, VA |
83 (2.0) $97 - 8 - 6$ Ralph Jeffords, 12/14 Centreville, VA |
84 (1.0) $7 \times 8 \times \dfrac96$ Ralph Jeffords, 12/14 Centreville, VA |
85 (1.0) $8 \times 9 + 6 + 7$ Kenneth Chapman, 1/15 Santa Paula, CA |
86 (2.2) $\dfrac{76}{.8} - 9$ Kenneth Chapman, 1/15 Santa Paula, CA |
87 (2.6) $\dfrac{6 + 8.\overline{9}\%}{7\%}$ Steve Wilson, 1/15 Lawrence, KS |
88 (1.0) $(7 + 9) \times 6 - 8$ Ralph Jeffords, 3/15 Centreville, VA |
89 (1.0) $(6 + 8) \times 7 - 9$ Ralph Jeffords, 1/15 Centreville, VA |
90 (2.0) $87 + 9 - 6$ Steve Wilson, 8/14 Lawrence, KS |
|
91 (2.2) $\dfrac{6}{8\%} + 9 + 7$ Steve Wilson, 3/15 Lawrence, KS |
92 (2.4) $87 + 6 - .\overline{9}$ Ralph Jeffords, 2/15 Centreville, VA |
93 (2.0) $76 + 8 + 9$ Ralph Jeffords, 1/15 Centreville, VA |
94 (2.2) $87 + 6.\overline{9}$ Ralph Jeffords, 2/15 Centreville, VA |
95 (1.0) $(6 + 7) \times 8 - 9$ Ralph Jeffords, 1/15 Centreville, VA |
96 (1.0) $6 \times 8 \times (9 - 7)$ Steve Wilson, 3/15 Lawrence, KS |
97 (1.0) $(6 + 9) \times 7 - 8$ Steve Wilson, 3/15 Lawrence, KS |
98 (2.0) $98 \times (7 - 6)$ Steve Wilson, 3/15 Lawrence, KS |
99 (1.0) $(7 + 8) \times 6 + 9$ Ralph Jeffords, 1/15 Centreville, VA |
100 (2.2) $\dfrac{8 + 7 - 6}{9\%}$ Steve Wilson, 8/14 Lawrence, KS |
|
101 (2.4) $\dfrac{9 \times 8}{.\overline{6}} - 7$ Ralph Jeffords, 2/15 Centreville, VA |
102 (2.0) $87 + 6 + 9$ Ralph Jeffords, 2/15 Centreville, VA |
103 (2.4) $(6 + 7) \times 8 - .\overline{9}$ Ralph Jeffords, 4/15 Centreville, VA |
104 (1.0) $(7 + 9) \times 6 + 8$ Ralph Jeffords, 3/15 Centreville, VA |
105 (2.2) $7 \times (6 + 8.\overline{9})$ Steve Wilson, 4/15 Lawrence, KS |
106 (2.4) $\dfrac{7.\overline{9}}{8\%} + 6$ Steve Wilson, 4/15 Lawrence, KS |
107 (1.0) $(6 + 8) \times 7 + 9$ Ralph Jeffords, 4/15 Centreville, VA |
108 (2.2) $\dfrac{9}{\left( 7 + \dfrac86 \right)\%}$ Steve Wilson, 4/15 Lawrence, KS |
109 (1.0) $(6 + 7) \times 9 - 8$ Ralph Jeffords, 4/15 Centreville, VA |
110 (1.0) $8 \times 7 + 9 \times 6$ Steve Wilson, 8/14 Lawrence, KS |
|
111 (1.0) $6 \times 8 + 7 \times 9$ Ralph Jeffords, 3/15 Centreville, VA |
112 (2.2) $(7.\overline{9} + 6) \times 8$ Steve Wilson, 4/15 Lawrence, KS |
113 (1.0) $(9 + 8) \times 7 - 6$ Sarah White, 10/14 Overland Park, KS |
114 (1.0) $9 \times 8 + 7 \times 6$ Alex Hwang, 1/15 Overland Park, KS |
115 (2.2) $\dfrac{78 - 9}{.6}$ Ralph Jeffords, 4/15 Centreville, VA |
116 (2.4) $\dfrac{7 - 6}{.8\%} - 9$ Steve Wilson, 4/15 Lawrence, KS |
117 (2.0) $78 \times \dfrac96$ Sarah White, 10/14 Overland Park, KS |
118 (2.6) $\dfrac{9 - .8 + 6\%}{7\%}$ Steve Wilson, 10/15 Lawrence, KS |
119 (1.0) $(6 + 8) \times 9 - 7$ Ralph Jeffords, 5/15 Centreville, VA |
120 (2.2) $(7 + 9) \times \dfrac{6}{.8}$ Steve Wilson, 9/14 Lawrence, KS |
|
121 (2.2) $\dfrac{78}{.6} - 9$ Kenneth Chapman, 2/15 Santa Paula, CA |
122 (1.0) $(7 + 9) \times 8 - 6$ Kenneth Chapman, 5/15 Santa Paula, CA |
123 (2.4) $\dfrac{89 - 7}{.\overline{6}}$ Ralph Jeffords, 6/15 Centreville, VA |
124 (2.8) $\dfrac{7 - 6}{.8\%} - .\overline{9}$ Ralph Jeffords, 6/15 Centreville, VA |
125 (1.0) $(6 + 7) \times 9 + 8$ Ralph Jeffords, 4/15 Centreville, VA |
126 (1.0) $7 \times 9 \times (8 - 6)$ Kenneth Chapman, 3/15 Santa Paula, CA |
127 (1.0) $(6 + 9) \times 8 + 7$ Kenneth Chapman, 5/15 Santa Paula, CA |
128 (2.0) $\dfrac{896}{7}$ Kenneth Chapman, 3/15 Santa Paula, CA |
129 (1.0) $(7 + 8) \times 9 - 6$ Kenneth Chapman, 5/15 Santa Paula, CA |
130 (2.2) $\dfrac{87 - 9}{.6}$ Steve Wilson, 9/14 Lawrence, KS |
|
131 (2.0) $7 \times 9 + 68$ Ralph Jeffords, 7/15 Centreville, VA |
132 (2.0) $6 \times 9 + 78$ Ralph Jeffords, 7/15 Centreville, VA |
133 (1.0) $(6 + 8) \times 9 + 7$ Ralph Jeffords, 5/15 Centreville, VA |
134 (1.0) $(7 + 9) \times 8 + 6$ Ralph Jeffords, 5/15 Centreville, VA |
135 (2.2) $\dfrac{9}{6\%} - 8 - 7$ Kenneth Chapman, 4/15 Santa Paula, CA |
136 (2.0) $68 \times (9 - 7)$ Kenneth Chapman, 4/15 Santa Paula, CA |
137 (2.4) $\dfrac{9 - .78}{6\%}$ Ralph Jeffords, 6/15 Centreville, VA |
138 (2.2) $\dfrac{6}{8\%} + 7 \times 9$ Kenneth Chapman, 4/15 Santa Paula, CA |
139 (2.0) $8 \times 9 + 67$ Ralph Jeffords, 7/15 Centreville, VA |
140 (2.0) $6 \times 7 + 98$ Ralph Jeffords, 7/15 Centreville, VA |
|
141 (1.0) $(7 + 8) \times 9 + 6$ Kenneth Chapman, 5/15 Santa Paula, CA |
142 (2.8) $\dfrac{9 - 8 - .6\%}{.7\%}$ Steve Wilson, 10/15 Lawrence, KS |
143 (2.4) $\dfrac{8.\overline{9}}{6\%} - 7$ Ralph Jeffords, 9/15 Centreville, VA |
144 (1.0) $6 \times (7 + 8 + 9)$ Kenneth Chapman, 6/15 Santa Paula, CA |
145 (2.0) $97 + 8 \times 6$ Carlos Perez, 4/15 Overland Park, KS |
146 (2.2) $\dfrac{98}{.7} + 6$ Kenneth Chapman, 5/15 Santa Paula, CA |
147 (2.0) $79 + 68$ Andreina Lugo Parra, 3/15 Olathe, KS |
148 (2.0) $8 \times 9 + 76$ Ralph Jeffords, 7/15 Centreville, VA |
149 (2.0) $86 + 7 \times 9$ Ralph Jeffords, 9/15 Centreville, VA |
150 (2.2) $(9 - 7) \times \dfrac{6}{8\%}$ Steve Wilson, 1/15 Lawrence, KS |
|
151 (2.2) $\dfrac{9}{6\%} + 8 - 7$ Ralph Jeffords, 9/15 Centreville, VA |
152 (2.0) $96 + 8 \times 7$ Alex Hwang, 3/15 Overland Park, KS |
153 (2.6) $\dfrac{8}{(6 - .\overline{9})\%} - 7$ Steve Wilson, 10/15 Lawrence, KS |
154 (2.2) $79 + \dfrac{6}{8\%}$ Steve Wilson, 9/15 Lawrence, KS |
155 (2.4) $\dfrac{9 \times .6 + 7}{8\%}$ Steve Wilson, 9/15 Lawrence, KS |
156 (2.0) $89 + 67$ Sarah White, 10/14 Overland Park, KS |
157 (2.4) $\dfrac{8.\overline{9}}{6\%} + 7$ Steve Wilson, 9/15 Lawrence, KS |
158 (2.0) $79 \times (8 - 6)$ Steve Wilson, 9/15 Lawrence, KS |
159 (2.6) $\dfrac{8-7}{.\overline{6}\%} + 9$ Steve Wilson, 9/15 Lawrence, KS |
160 (2.2) $\dfrac{89 + 7}{.6}$ Steve Wilson, 1/15 Lawrence, KS |
|
161 (1.0) $7 \times (6 + 8 + 9)$ Kenneth Chapman, 6/15 Santa Paula, CA |
162 (2.4) $(8 + 6) \times \dfrac{9}{.\overline{7}}$ Steve Wilson, 10/15 Lawrence, KS |
163 (2.0) $\dfrac{978}{6}$ Steve Wilson, 10/15 Lawrence, KS |
164 (2.4) $8 \times \left( \dfrac{9}{.\overline{6}} + 7 \right)$ Steve Wilson, 11/15 Lawrence, KS |
165 (2.0) $97 + 68$ Alex Hwang, 1/15 Overland Park, KS |
166 (2.4) $\dfrac{8 + 7 - 6\%}{9\%}$ Steve Wilson, 11/15 Lawrence, KS |
167 (2.6) $\dfrac{8}{(6 - .\overline{9})\%} + 7$ Steve Wilson, 11/15 Lawrence, KS |
168 (1.0) $7 \times 8 \times (9 - 6)$ Alex Hwang, 2/15 Overland Park, KS |
169 (3.2) $(7 + 6)^{ \sqrt[\sqrt{9}]{8} }$ Steve Wilson, 3/15 Lawrence, KS |
170 (2.4) $\dfrac{9 + 8}{.7 - .6}$ Steve Wilson, 1/15 Lawrence, KS |
|
171 (2.4) $9 \times \left( \dfrac{8}{.\overline{6}} + 7 \right)$ Steve Wilson, 11/15 Lawrence, KS |
172 (2.0) $86 \times (9 - 7)$ Kenneth Chapman, 11/15 Santa Paula, CA |
173 (3.8) $\dfrac{(8 - \sqrt{9})!}{.\overline{6}} - 7$ Steve Wilson, 5/16 Lawrence, KS |
174 (2.0) $98 + 76$ Andreina Lugo Parra, 3/15 Olathe, KS |
175 (2.2) $\dfrac{98 + 7}{.6}$ Steve Wilson, 11/15 Lawrence, KS |
176 (1.0) $8 \times (6 + 7 + 9)$ Kenneth Chapman, 6/15 Santa Paula, CA |
177 (2.2) $\left( \dfrac{7}{.6} + 8 \right) \times 9$ Steve Wilson, 1/16 Lawrence, KS |
178 (3.4) $\dfrac{6! - 8}{7 - \sqrt{9}}$ Steve Wilson, 5/16 Lawrence, KS |
179 (3.4) $\dfrac{.8 - .6}{.\overline{7}\%} - .\overline{9}$ Steve Wilson, 10/16 Lawrence, KS |
180 (2.2) $(8 + 6) \times \dfrac{9}{.7}$ Steve Wilson, 1/15 Lawrence, KS |
|
181 (3.4) $\dfrac{.8 - .6}{.\overline{7}\%} + .\overline{9}$ Steve Wilson, 10/16 Lawrence, KS |
182 (3.4) $\dfrac{6! + 8}{7 - \sqrt{9}}$ Steve Wilson, 5/16 Lawrence, KS |
183 (2.0) $97 + 86$ Steve Wilson, 1/16 Lawrence, KS |
184 (3.4) $\dfrac{6!}{\sqrt{9}} - 7 \times 8$ Steve Wilson, 3/16 Lawrence, KS |
185 (3.2) $\dfrac{6}{(\sqrt{9})\%} - 8 - 7$ Steve Wilson, 11/16 Lawrence, KS |
186 (3.2) $6 \times (7 + 8 \times \sqrt{9})$ Steve Wilson, 10/16 Lawrence, KS |
187 (3.6) $\dfrac{(\sqrt{9})!}{6\%} + 87$ Steve Wilson, 5/16 Lawrence, KS |
188 (3.4) $\dfrac{6!}{7 - \sqrt{9}} + 8$ Steve Wilson, 9/16 Lawrence, KS |
189 (1.0) $(6 + 7 + 8) \times 9$ Andreina Lugo Parra, 2/15 Olathe, KS |
190 (3.6) $\dfrac{.8}{.\overline{6}\%} + \dfrac{.7}{.\overline{9}\%}$ Steve Wilson, 10/16 Lawrence, KS |
|
191 (2.2) $\dfrac{8 + 6}{7\%} - 9$ Kenneth Chapman, 11/15 Santa Paula, CA |
192 (2.4) $(7 + 9) \times \dfrac{8}{.\overline{6}}$ Steve Wilson, 1/16 Lawrence, KS |
193 (2.6) $\dfrac{8 - 6}{.\overline{9}\%} - 7$ Steve Wilson, 1/16 Lawrence, KS |
194 (2.0) $97 \times (8 - 6)$ Steve Wilson, 3/16 Lawrence, KS |
195 (2.6) $\dfrac{78}{.\overline{9} - .6}$ Steve Wilson, 1/16 Lawrence, KS |
196 (3.0) $(8 + 6)^{9-7}$ Steve Wilson, 11/16 Lawrence, KS |
197 (3.2) $68 \times \sqrt{9} - 7$ Steve Wilson, 3/16 Lawrence, KS |
198 (3.4) $(7 - \sqrt{9})! \times 8 + 6$ Steve Wilson, 10/16 Lawrence, KS |
199 (2.6) $\dfrac{8 + 6}{7\%} - .\overline{9}$ Steve Wilson, 2/16 Lawrence, KS |
200 (2.2) $\dfrac{8}{(6 + 7 - 9)\%}$ Steve Wilson, 5/15 Lawrence, KS |
|
201 (2.6) $\dfrac{8 + 6}{7\%} + .\overline{9}$ Steve Wilson, 2/16 Lawrence, KS |
202 (3.2) $\dfrac{.7}{(.\overline{9} - .\overline{6})\%} - 8$ Paolo Pellegrini, 3/17 Martina Franca, Italy |
203 (2.8) $\dfrac{.7}{.\overline{6}\%} + 98$ Steve Wilson, 2/16 Lawrence, KS |
204 (3.4) $\dfrac{7!}{8 \times \sqrt{9}} - 6$ Steve Wilson, 2/17 Lawrence, KS |
205 (3.6) $\dfrac{6 + (7 + 8)\%}{(\sqrt{9})\%}$ Steve Wilson, 12/16 Lawrence, KS |
206 (2.2) $\dfrac{9}{6\%} + 7 \times 8$ Kenneth Chapman, 1/16 Santa Paula, CA |
207 (2.6) $\dfrac{8 - 6}{.\overline{9}\%} + 7$ Steve Wilson, 2/16 Lawrence, KS |
208 (3.4) $\dfrac{\dfrac{7!}{8} - 6}{\sqrt{9}}$ Steve Wilson, 2/17 Lawrence, KS |
209 (2.2) $\dfrac{8 + 6}{7\%} + 9$ Steve Wilson, 2/16 Lawrence, KS |
210 (2.6) $\dfrac{7 \times 6}{.\overline{9} - .8}$ Steve Wilson, 5/15 Lawrence, KS |
|
211 (3.2) $68 \times \sqrt{9} + 7$ Steve Wilson, 3/16 Lawrence, KS |
212 (3.4) $\dfrac{ \dfrac{7!}{8} + 6}{\sqrt{9}}$ Paolo Pellegrini, 3/17 Martina Franca, Italy |
213 (2.8) $\dfrac{.9}{.\overline{6}\%} + 78$ Steve Wilson, 4/16 Lawrence, KS |
214 (3.4) $\dfrac{6! - 78}{\sqrt{9}}$ Paolo Pellegrini, 3/17 Martina Franca, Italy |
215 (3.2) $\dfrac{6}{(\sqrt{9})\%} + 8 + 7$ Steve Wilson, 11/16 Lawrence, KS |
216 (2.6) $\dfrac{6}{(9 - 7 \times .\overline{8})\%}$ Steve Wilson, 4/16 Lawrence, KS |
217 (2.8) $\dfrac{.8}{.\overline{6}\%} + 97$ Steve Wilson, 4/16 Lawrence, KS |
218 (3.2) $\dfrac{.7}{(.\overline{9} - .\overline{6})\%} + 8$ Paolo Pellegrini, 3/17 Martina Franca, Italy |
219 (2.6) $\dfrac{9 - 7}{.\overline{8}\%} - 6$ Steve Wilson, 4/16 Lawrence, KS |
220 (2.8) $\dfrac{7 - 8 \times .6}{.\overline{9}\%}$ Steve Wilson, 5/15 Lawrence, KS |
|
221 (1.0) $(6 + 7) \times (8 + 9)$ Kenneth Chapman, 6/15 Santa Paula, CA |
222 (2.8) $\dfrac{.9}{.\overline{6}\%} + 87$ Steve Wilson, 9/16 Lawrence, KS |
223 (2.8) $\dfrac{8 - 6 + .7\%}{.9\%}$ Steve Wilson, 4/16 Lawrence, KS |
224 (1.0) $(6 + 8) \times (7 + 9)$ Kenneth Chapman, 6/15 Santa Paula, CA |
225 (1.0) $(6 + 9) \times (7 + 8)$ Kenneth Chapman, 7/15 Santa Paula, CA |
226 (3.2) $\dfrac{678}{\sqrt{9}}$ Paolo Pellegrini, 3/17 Martina Franca, Italy |
227 (3.4) $7 \times \sqrt[.6]{8} + \sqrt{9}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
228 (2.2) $\dfrac{9}{6\%} + 78$ Kenneth Chapman, 2/16 Santa Paula, CA |
229 (3.2) $\dfrac{687}{\sqrt{9}}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
230 (2.6) $\dfrac{8 - 6 + 7\%}{.9\%}$ Steve Wilson, 5/15 Lawrence, KS |
|
231 (2.6) $\dfrac{9 - 7}{.\overline{8}\%} + 6$ Steve Wilson, 9/16 Lawrence, KS |
232 (3.0) $\dfrac{.7 + .9}{.\overline{6}\%} - 8$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
233 (3.2) $7 \times \sqrt[.6]{8} + 9$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
234 (2.0) $78 \times (9 - 6)$ Kenneth Chapman, 1/16 Santa Paula, CA |
235 (2.4) $\dfrac{7 + 8 - .9}{6\%}$ Steve Wilson, 9/16 Lawrence, KS |
236 (2.4) $\dfrac{7 + 8\%}{(9 - 6)\%}$ Steve Wilson, 11/16 Lawrence, KS |
237 (2.2) $\dfrac{9}{6\%} + 87$ Kenneth Chapman, 2/16 Santa Paula, CA |
238 (3.6) $\dfrac{7 + (6 + 8)\%}{(\sqrt{9})\%}$ Paolo Pellegrini, 1/18 Martina Franca, Italy |
239 (3.4) $\dfrac{6!}{\sqrt{9}} - 8 + 7$ Steve Wilson, 3/16 Lawrence, KS |
240 (2.2) $\dfrac{6}{.9 - \dfrac78}$ Steve Wilson, 11/16 Lawrence, KS |
|
241 (2.2) $\dfrac{8 + 7}{6\%} - 9$ Kenneth Chapman, 1/16 Santa Paula, CA |
242 (2.4) $\dfrac{9 + 8 - 6\%}{7\%}$ Steve Wilson, 12/16 Lawrence, KS |
243 (2.6) $\dfrac{9 \times .6}{.8 - .\overline{7}}$ Steve Wilson, 12/16 Lawrence, KS |
244 (2.4) $\dfrac{9 - 7}{.8\%} - 6$ Steve Wilson, 12/16 Lawrence, KS |
245 (3.2) $\sqrt{7^6} - 98$ Steve Wilson, 4/22 Lawrence, KS |
246 (2.8) $\dfrac{9 - .8}{.7 - .\overline{6}}$ Steve Wilson, 1/17 Lawrence, KS |
247 (3.2) $\dfrac{.8}{(.\overline{9} - .\overline{6})\%} + 7$ Paolo Pellegrini, 3/18 Martina Franca, Italy |
248 (3.0) $\dfrac{.7 + .9}{.\overline{6}\%} + 8$ Paolo Pellegrini, 3/18 Martina Franca, Italy |
249 (2.6) $\dfrac{7 + 8}{6\%} - .\overline{9}$ Steve Wilson, 1/17 Lawrence, KS |
250 (2.6) $\dfrac{.6}{(7 + 8 + 9)\%\%}$ Steve Wilson, 5/15 Lawrence, KS |
|
251 (2.6) $\dfrac{7 + 8}{6\%} + .\overline{9}$ Steve Wilson, 1/17 Lawrence, KS |
252 (3.0) $\dfrac{.9 + 78\%}{.\overline{6}\%}$ Paolo Pellegrini, 3/18 Martina Franca, Italy |
253 (3.4) $\dfrac{7 + 8}{6\%} + \sqrt{9}$ Paolo Pellegrini, 3/18 Martina Franca, Italy |
254 (3.2) $\sqrt{7^6} - 89$ Paolo Pellegrini, 3/18 Martina Franca, Italy |
255 (2.6) $\dfrac{9.7 - 8}{.\overline{6}\%}$ Steve Wilson, 1/17 Lawrence, KS |
256 (2.4) $\dfrac{9 - 7}{.8\%} + 6$ Steve Wilson, 1/17 Lawrence, KS |
257 (3.2) $7^{\sqrt{9}} - 86$ Steve Wilson, 4/17 Lawrence, KS |
258 (3.8) $\sqrt{\dfrac{8!}{.7}} + 6 \times \sqrt{9}$ Steve Wilson, 7/22 Lawrence, KS |
259 (2.2) $\dfrac{7 + 8}{6\%} + 9$ Steve Wilson, 8/15 Lawrence, KS |
260 (2.2) $\dfrac{7.8}{(9 - 6)\%}$ Steve Wilson, 2/17 Lawrence, KS |
|
261 (2.0) $87 \times (9 - 6)$ Kenneth Chapman, 1/16 Santa Paula, CA |
262 (2.6) $\dfrac{9}{.7 - .\overline{6}} - 8$ Steve Wilson, 2/17 Lawrence, KS |
263 (3.4) $87.\overline{6} \times \sqrt{9}$ Steve Wilson, 8/19 Lawrence, KS |
264 (1.0) $(6 \times 7 - 9) \times 8$ Kenneth Chapman, 8/15 Santa Paula, CA |
265 (2.2) $\dfrac{8.9 + 7}{6\%}$ Steve Wilson, 3/17 Lawrence, KS |
266 (3.4) $\dfrac{78}{\sqrt{9\%}} + 6$ Steve Wilson, 7/22 Lawrence, KS |
267 (2.6) $\dfrac{8.9}{.7 - .\overline{6}}$ Steve Wilson, 3/17 Lawrence, KS |
268 (2.4) $\dfrac{9 + 7 + 8\%}{6\%}$ Steve Wilson, 3/17 Lawrence, KS |
269 (2.4) $\dfrac{8 + 7\%}{(9 - 6)\%}$ Steve Wilson, 3/17 Lawrence, KS |
270 (2.2) $\dfrac{6}{.8 - \dfrac79}$ Steve Wilson, 6/15 Lawrence, KS |
|
271 (3.2) $\sqrt{7^6} - 8 \times 9$ Jonathan Frank, 4/22 Rye, NY |
272 (3.2) $6^{\sqrt{9}} + 7 \times 8$ Niko Solstice, 8/17 Location Withheld |
273 (1.0) $7 \times (6 \times 8 - 9)$ Kenneth Chapman, 7/15 Santa Paula, CA |
274 (3.8) $\dfrac{.6 + .\overline{8}\%}{(.\overline{9} - .\overline{7})\%}$ Steve Wilson, 7/22 Lawrence, KS |
275 (2.2) $\dfrac{9 + 7 + 6}{8\%}$ Steve Wilson, 3/17 Lawrence, KS |
276 (4.6) $69 \times (7 - \sec\arctan\sqrt{8})$ Steve Wilson, 7/22 Lawrence, KS |
277 (3.4) $6! \times \dfrac{\sqrt{9}}{8} + 7$ Steve Wilson, 4/22 Lawrence, KS |
278 (2.6) $\dfrac{9}{.7 - .\overline{6}} + 8$ Steve Wilson, 4/17 Lawrence, KS |
279 (2.6) $\dfrac{6}{.8 - .\overline{7}} + 9$ Steve Wilson, 4/17 Lawrence, KS |
280 (2.2) $\dfrac{9 + 7.8}{6\%}$ Steve Wilson, 6/15 Lawrence, KS |
|
281 (3.2) $9 \times \sqrt[.6]{8} - 7$ Steve Wilson, 9/21 Lawrence, KS |
282 (1.0) $6 \times (7 \times 8 - 9)$ Kenneth Chapman, 7/15 Santa Paula, CA |
283 (4.6) $69 \times \ln\sqrt{\exp 8} + 7$ Steve Wilson, 7/22 Lawrence, KS |
284 (3.4) $\dfrac{87}{\sqrt{9\%}} - 6$ Steve Wilson, 7/22 Lawrence, KS |
285 (2.6) $\dfrac{8.9 - 7}{.\overline{6}\%}$ Steve Wilson, 4/17 Lawrence, KS |
286 (4.2) $\dfrac{7!\pmf}{(.\overline{9} + .8)\%} + 6$ Steve Wilson, 7/22 Lawrence, KS |
287 (2.8) $\dfrac{8 - 6 + .9\%}{.7\%}$ Steve Wilson, 4/17 Lawrence, KS |
288 (2.4) $6 \times (7 - .\overline{9}) \times 8$ Steve Wilson, 8/18 Lawrence, KS |
289 (3.2) $\dfrac{867}{\sqrt{9}}$ Susan Vongphrachanh, 2/17 Kansas City, KS |
290 (2.2) $\dfrac{8.7}{(9 - 6)\%}$ Steve Wilson, 6/15 Lawrence, KS |
|
291 (3.8) $\dfrac{7}{\sqrt{9} \times 8\pmf} - .\overline{6}$ Steve Wilson, 4/22 Lawrence, KS |
292 (2.2) $\dfrac{6}{(9 - 7)\%} - 8$ Steve Wilson, 8/18 Lawrence, KS |
293 (3.6) $\dfrac{6!}{.8 \times \sqrt{9}} - 7$ Steve Wilson, 9/20 Lawrence, KS |
294 (2.4) $6 \times 7 \times (8 - .\overline{9})$ Steve Wilson, 8/18 Lawrence, KS |
295 (2.2) $\dfrac{9 + 8.7}{6\%}$ Steve Wilson, 8/18 Lawrence, KS |
296 (2.4) $\dfrac{6 - 8\%}{(9 - 7)\%}$ Steve Wilson, 8/18 Lawrence, KS |
297 (2.8) $\dfrac{.6}{.8 - .\overline{79}}$ Steve Wilson, 9/18 Lawrence, KS |
298 (4.8) $\dfrac{6}{(\exp\arsech(.8))\%} + 7 - 9$ Steve Wilson, 7/22 Lawrence, KS |
299 (3.4) $\dfrac{\sqrt{9}}{8\pmf} - 76$ Steve Wilson, 4/22 Lawrence, KS |
300 (2.2) $\dfrac{8 \times 6}{(9 + 7)\%}$ Steve Wilson, 6/15 Lawrence, KS |
|
301 (4.8) $\dfrac{9}{(\ln\sqrt{\exp 6})\%} + 8 - 7$ Steve Wilson, 7/22 Lawrence, KS |
302 (4.8) $\sqrt{7^6} + \dfrac{9}{\tanh\ln(.8)}$ Steve Wilson, 7/22 Lawrence, KS |
303 (3.2) $6^{\sqrt{9}} + 87$ Niko Solstice, 8/17 Location Withheld |
304 (2.4) $\dfrac{6 + 8\%}{(9 - 7)\%}$ Steve Wilson, 9/18 Lawrence, KS |
305 (2.4) $\dfrac{7 - .9}{(8 - 6)\%}$ Steve Wilson, 9/18 Lawrence, KS |
306 (1.0) $(6 \times 7 - 8) \times 9$ Steve Wilson, 6/15 Lawrence, KS |
307 (3.6) $\dfrac{6!}{.8 \times \sqrt{9}} + 7$ Steve Wilson, 9/20 Lawrence, KS |
308 (2.2) $\dfrac{6}{(9 - 7)\%} + 8$ Steve Wilson, 12/16 Lawrence, KS |
309 (3.6) $\sqrt{\dfrac{8!}{.7}} + 69$ Steve Wilson, 7/22 Lawrence, KS |
310 (4.4) $\dfrac{6.\overline{8}\%}{(.\overline{9} - .\overline{7})\pmf}$ Steve Wilson, 7/22 Lawrence, KS |
|
311 (3.4) $7^{\sqrt{9}} - \sqrt[.6]{8}$ Steve Wilson, 7/22 Lawrence, KS |
312 (2.8) $\dfrac{9 - 7 + 8\%}{.\overline{6}\%}$ Steve Wilson, 9/18 Lawrence, KS |
313 (4.6) $6^{\sec\arctan\sqrt{8}} + 97$ Steve Wilson, 7/22 Lawrence, KS |
314 (3.6) $\dfrac{.7}{(.\overline{8} - .\overline{6})\%} - .\overline{9}$ Steve Wilson, 7/22 Lawrence, KS |
315 (2.4) $\dfrac{9 \times .7}{(8 - 6)\%}$ Steve Wilson, 9/18 Lawrence, KS |
316 (3.6) $\dfrac{.7}{(.\overline{8} - .\overline{6})\%} + .\overline{9}$ Steve Wilson, 7/22 Lawrence, KS |
317 (3.6) $(8! - 6!)\% - 79$ Steve Wilson, 4/22 Lawrence, KS |
318 (3.4) $\dfrac{6!}{\sqrt{9}} + 78$ Steve Wilson, 9/21 Lawrence, KS |
319 (3.4) $\sqrt{7^6} - 8 \times \sqrt{9}$ Steve Wilson, 2/22 Lawrence, KS |
320 (2.6) $\dfrac{6}{\left( \dfrac78 + .\overline{9} \right)\%}$ Steve Wilson, 7/15 Lawrence, KS |
|
321 (4.6) $\dfrac{.7}{(.\overline{8} - .\overline{6})\%} + (\sqrt{9})!$ Steve Wilson, 7/22 Lawrence, KS |
322 (1.0) $7 \times (6 \times 9 - 8)$ Kenneth Chapman, 7/15 Santa Paula, CA |
323 (4.2) $\dfrac{7!\pmf}{(.\overline{9} + .6)\%} + 8$ Steve Wilson, 7/22 Lawrence, KS |
324 (2.4) $\dfrac{9}{(8.\overline{7} - 6)\%}$ Steve Wilson, 8/19 Lawrence, KS |
325 (2.4) $\dfrac{9.6 - 7}{.8\%}$ Steve Wilson, 8/19 Lawrence, KS |
326 (3.2) $\sqrt{7^6} - 8 - 9$ Steve Wilson, 9/20 Lawrence, KS |
327 (1.0) $6 \times 7 \times 8 - 9$ Alex Hwang, 4/15 Overland Park, KS |
328 (2.4) $(6 \times 7 - .\overline{9}) \times 8$ Steve Wilson, 8/19 Lawrence, KS |
329 (2.4) $(6 \times 8 - .\overline{9}) \times 7$ Steve Wilson, 8/19 Lawrence, KS |
330 (1.0) $6 \times (7 \times 9 - 8)$ Kenneth Chapman, 7/15 Santa Paula, CA |
|
331 (3.6) $7^{\sqrt{9}} - \dfrac{8}{.\overline{6}}$ Steve Wilson, 12/17 Lawrence, KS |
332 (2.8) $\dfrac{9 - 7 - .8\%}{.6\%}$ Steve Wilson, 2/20 Lawrence, KS |
333 (3.2) $6 \times 7 \times 8 - \sqrt{9}$ Steve Wilson, 2/22 Lawrence, KS |
334 (3.4) $\sqrt{7^6} - 8.\overline{9}$ Steve Wilson, 9/20 Lawrence, KS |
335 (2.4) $6 \times 7 \times 8 - .\overline{9}$ Niko Solstice, 7/17 Location Withheld |
336 (2.4) $7 \times 8 \times 9 \times .\overline{6}$ Niko Solstice, 7/17 Location Withheld |
337 (2.4) $6 \times 7 \times 8 + .\overline{9}$ Niko Solstice, 7/17 Location Withheld |
338 (3.4) $\sqrt{7^6} - 8 + \sqrt{9}$ Steve Wilson, 9/20 Lawrence, KS |
339 (3.2) $6 \times 7 \times 8 + \sqrt{9}$ Steve Wilson, 2/22 Lawrence, KS |
340 (2.2) $\dfrac{6.8}{(9 - 7)\%}$ Steve Wilson, 7/15 Lawrence, KS |
|
341 (2.2) $\dfrac{7}{(8 - 6)\%} - 9$ Steve Wilson, 2/20 Lawrence, KS |
342 (2.4) $(7 \times 8 + .\overline{9}) \times 6$ Steve Wilson, 2/20 Lawrence, KS |
343 (2.4) $(6 \times 8 + .\overline{9}) \times 7$ Steve Wilson, 2/20 Lawrence, KS |
344 (2.4) $(6 \times 7 + .\overline{9}) \times 8$ Steve Wilson, 2/20 Lawrence, KS |
345 (1.0) $6 \times 7 \times 8 + 9$ Jaspreet Kaur, 5/15 Lenexa, KS |
346 (3.6) $\sqrt{7^6} + \sqrt{8.\overline{9}}$ Steve Wilson, 5/22 Lawrence, KS |
347 (3.4) $\dfrac{7}{(8 - 6)\%} - \sqrt{9}$ Steve Wilson, 5/22 Lawrence, KS |
348 (3.4) $\sqrt{7^6} + 8 - \sqrt{9}$ Steve Wilson, 4/21 Lawrence, KS |
349 (2.6) $\dfrac{7}{(8 - 6)\%} - .\overline{9}$ Steve Wilson, 4/21 Lawrence, KS |
350 (2.6) $\dfrac{7 \times .\overline{9}}{(8 - 6)\%}$ Steve Wilson, 7/15 Lawrence, KS |
|
351 (2.6) $\dfrac{7}{(8 - 6)\%} + .\overline{9}$ Steve Wilson, 4/21 Lawrence, KS |
352 (3.2) $\dfrac{6!}{9 - 7} - 8$ Steve Wilson, 7/22 Lawrence, KS |
353 (3.4) $\dfrac{7}{(8 - 6)\%} + \sqrt{9}$ Steve Wilson, 5/22 Lawrence, KS |
354 (3.4) $\sqrt{7^6} + 8 + \sqrt{9}$ Steve Wilson, 4/21 Lawrence, KS |
355 (3.6) $7^{\sqrt{9}} + \dfrac{8}{.\overline{6}}$ Steve Wilson, 12/17 Lawrence, KS |
356 (3.2) $\dfrac{6! - 8}{9 - 7}$ Steve Wilson, 7/22 Lawrence, KS |
357 (3.2) $7^{\sqrt{9}} + 6 + 8$ Niko Solstice, 8/17 Location Withheld |
358 (3.4) $7 \times \dfrac{\sqrt{9}}{6\%} + 8$ Steve Wilson, 2/22 Lawrence, KS |
359 (2.2) $\dfrac{7}{(8 - 6)\%} + 9$ Steve Wilson, 5/21 Lawrence, KS |
360 (2.2) $\dfrac{9 \times 6}{(8 + 7)\%}$ Steve Wilson, 7/15 Lawrence, KS |
|
361 (3.6) $\dfrac{7!}{8 + 6} + .\overline{9}$ Steve Wilson, 5/21 Lawrence, KS |
362 (3.4) $\dfrac{\sqrt{9}}{8\pmf} - 7 - 6$ Steve Wilson, 5/22 Lawrence, KS |
363 (3.4) $\dfrac{7!}{8 + 6} + \sqrt{9}$ Steve Wilson, 5/21 Lawrence, KS |
364 (2.8) $7 \times \left( \dfrac{.6}{.\overline{9}\%} - 8 \right)$ Steve Wilson, 5/21 Lawrence, KS |
365 (3.6) $(8 - .7) \times \dfrac{\sqrt{9}}{6\%}$ Steve Wilson, 7/22 Lawrence, KS |
366 (3.6) $\dfrac{7!}{8 + 6} + (\sqrt{9})!$ Steve Wilson, 5/21 Lawrence, KS |
367 (2.6) $\dfrac{.6}{(7 + 9)\%\%} - 8$ Steve Wilson, 6/21 Lawrence, KS |
368 (2.4) $\dfrac{9 - 6}{.8\%} - 7$ Steve Wilson, 6/21 Lawrence, KS |
369 (1.0) $(6 \times 8 - 7) \times 9$ Kenneth Chapman, 8/15 Santa Paula, CA |
370 (1.0) $6 \times 7 \times 9 - 8$ Steve Wilson, 7/15 Lawrence, KS |
|
371 (4.8) $7 \times (6 \times 9 - (\sin(8!^{\circ}))!)$ Steve Wilson, 7/22 Lawrence, KS |
372 (2.8) $6 \times \left( \dfrac{.7}{.\overline{9}\%} - 8 \right)$ Steve Wilson, 6/21 Lawrence, KS |
373 (3.6) $\dfrac{.\overline{8} - 6\%}{\left(.\overline{9} - .\overline{7}\right)\%}$ Steve Wilson, 7/22 Lawrence, KS |
374 (3.4) $\dfrac{\sqrt{9}}{8\pmf} - 7 + 6$ Steve Wilson, 6/22 Lawrence, KS |
375 (2.4) $\dfrac{6}{(9 - 7) \times .8\%}$ Steve Wilson, 6/21 Lawrence, KS |
376 (1.0) $(9 \times 6 - 7) \times 8$ Alex Hwang, 3/15 Overland Park, KS |
377 (4.8) $\dfrac{\sqrt{9}}{8\pmf} - \log((7 - 6)\%)$ Steve Wilson, 7/22 Lawrence, KS |
378 (2.2) $6 \times 7 \times 8.\overline{9}$ Niko Solstice, 7/17 Location Withheld |
379 (4.8) $7 \times 6 \times 9 + (\sin(8!^{\circ}))!$ Steve Wilson, 7/22 Lawrence, KS |
380 (2.6) $\dfrac{76}{.\overline{9}-.8}$ Steve Wilson, 8/15 Lawrence, KS |
|
381 (3.6) $\dfrac{8!\%}{.9} - 67$ Steve Wilson, 6/22 Lawrence, KS |
382 (2.4) $\dfrac{9 - 6}{.8\%} + 7$ Steve Wilson, 6/21 Lawrence, KS |
383 (2.6) $\dfrac{.6}{(7 + 9)\%\%} + 8$ Steve Wilson, 7/21 Lawrence, KS |
384 (2.2) $6 \times 7.\overline{9} \times 8$ Steve Wilson, 7/21 Lawrence, KS |
385 (4.8) $7 \times (6 \times 9 + (\sin(8!^{\circ}))!)$ Steve Wilson, 7/22 Lawrence, KS |
386 (1.0) $6 \times 9 \times 7 + 8$ Carlos Perez, 3/15 Overland Park, KS |
387 (2.8) $\dfrac{86}{.\overline{9} - .\overline{7}}$ Steve Wilson, 7/21 Lawrence, KS |
388 (3.4) $\dfrac{\sqrt{9}}{8\pmf} + 7 + 6$ Steve Wilson, 6/22 Lawrence, KS |
389 (3.8) $(8! - ((9 - 6)!)!)\% - 7$ Steve Wilson, 6/22 Lawrence, KS |
390 (1.0) $(8 \times 9 - 7) \times 6$ Kenneth Chapman, 8/15 Santa Paula, CA |
|
391 (2.6) $\dfrac{.6}{(7 + 8)\%\%} - 9$ Steve Wilson, 7/21 Lawrence, KS |
392 (2.2) $6.\overline{9} \times 7 \times 8$ Steve Wilson, 7/21 Lawrence, KS |
393 (3.4) $8 \times \dfrac{\sqrt{9}}{6\%} - 7$ Steve Wilson, 2/22 Lawrence, KS |
394 (2.2) $\dfrac{8}{(9 - 7)\%} - 6$ Steve Wilson, 8/21 Lawrence, KS |
395 (2.2) $\dfrac{7.9}{(8 - 6)\%}$ Steve Wilson, 8/21 Lawrence, KS |
396 (2.8) $\dfrac{9 - 6 + 8\%}{.\overline{7}\%}$ Steve Wilson, 8/21 Lawrence, KS |
397 (2.4) $\dfrac{8 - 6\%}{(9 - 7)\%}$ Steve Wilson, 8/21 Lawrence, KS |
398 (3.6) $(8! - 6!)\% + 9 - 7$ Steve Wilson, 6/22 Lawrence, KS |
399 (1.0) $7 \times (6 \times 8 + 9)$ Kenneth Chapman, 9/15 Santa Paula, CA |
400 (2.2) $\dfrac{7 + 8 + 9}{6\%}$ Steve Wilson, 8/15 Lawrence, KS |
Page 1 (1-400), Page 2 (401-800), Page 3 (801-4000), Page 11 (4001+).