\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator {\arcsec} {arcsec} \DeclareMathOperator {\arcosh} {arcosh} \DeclareMathOperator {\arcsch} {arcsch} \)

Integermania!

Ramanujan

Srinivasa Ramanujan (1887-1920) was a largely self-taught mathematician from India, some of whose results still inspire research today. Once, when ill in the hospital in England, he was visited by fellow mathematician G. H. Hardy (1877-1947), who later wrote:

I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways."

Using one copy each of the digits 1, 7, 2, and 9, and any standard operations, create each of the positive integers. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201-4000), Page 11 (4001+).

  401 (2.4)
$\dfrac{7.\overline{9}}{2\%} + 1$
Steve Wilson, 10/15
Lawrence, KS
402 (3.4)
$\dfrac{ \sqrt{9 + 7}}{1\%} + 2$
Steve Wilson, 8/19
Lawrence, KS
403 (2.4)
$\dfrac{1}{.2\%} - 97$
Steve Wilson, 1/16
Lawrence, KS
404 (3.8)
$\dfrac{.9}{.\overline{2}\%} - 1^7$
Steve Wilson, 3/16
Lawrence, KS
405 (2.4)
$(7 - 2) \times \dfrac{9}{.\overline{1}}$
Steve Wilson, 1/16
Lawrence, KS
406 (2.8)
$\dfrac{.7}{.\overline{2}\%} + 91$
Steve Wilson, 1/16
Lawrence, KS
407 (2.2)
$\dfrac{9 - 1}{2\%} + 7$
Steve Wilson, 1/16
Lawrence, KS
408 (3.6)
$17 \times ((\sqrt{9})! - 2)!$
Steve Wilson, 8/19
Lawrence, KS
409 (2.2)
$\dfrac{7 + 1}{2\%} + 9$
Steve Wilson, 1/16
Lawrence, KS
410 (2.2)
$\dfrac{7 - 2.9}{1\%}$
Steve Wilson, 10/15
Lawrence, KS
  411 (2.8)
$\dfrac{.9}{.\overline{2}\%} + 7 - 1$
Steve Wilson, 2/16
Lawrence, KS
412 (2.6)
$\dfrac{9}{.1 \times .\overline{2}} + 7$
Steve Wilson, 2/16
Lawrence, KS
413 (2.2)
$\left( \dfrac{1}{2\%} + 9 \right) \times 7$
Steve Wilson, 2/16
Lawrence, KS
414 (2.4)
$\dfrac{92}{1 - .\overline{7}}$
Steve Wilson, 2/16
Lawrence, KS
415 (2.4)
$(9 - .7) \times \dfrac{1}{2\%}$
Steve Wilson, 2/16
Lawrence, KS
416 (2.4)
$\dfrac{9 - .7}{2\%} + 1$
Steve Wilson, 3/16
Lawrence, KS
417 (3.4)
$\dfrac{7!}{12} - \sqrt{9}$
Steve Wilson, 3/16
Lawrence, KS
418 (3.6)
$\dfrac{7}{.1} \times (\sqrt{9})! - 2$
Steve Wilson, 1/22
Lawrence, KS
419 (3.6)
$\dfrac{7!}{12} - .\overline{9}$
Steve Wilson, 12/21
Lawrence, KS
420 (2.2)
$\dfrac{91 - 7}{.2}$
Steve Wilson, 10/15
Lawrence, KS
  421 (2.4)
$\dfrac{1}{.2\%} - 79$
Steve Wilson, 12/16
Lawrence, KS
422 (2.8)
$\dfrac{.9}{.\overline{2}\%} + 17$
Steve Wilson, 12/16
Lawrence, KS
423 (2.6)
$\dfrac{9 - 7\%}{2.1\%}$
Steve Wilson, 12/16
Lawrence, KS
424 (4.6)
$\dfrac{.7 - .\overline{2}}{.\overline{1}\%} - (\sqrt{9})!$
Steve Wilson, 2/22
Lawrence, KS
425 (4.8)
$\dfrac{.7 - 9.2}{(\log(1\%))\%}$
Steve Wilson, 2/22
Lawrence, KS
426 (3.6)
$\dfrac{7!}{12} + (\sqrt{9})!$
Steve Wilson, 12/16
Lawrence, KS
427 (4.4)
$\dfrac{.7 - .\overline{2}}{.\overline{1}\%} - \sqrt{9}$
Steve Wilson, 2/22
Lawrence, KS
428 (3.4)
$\dfrac{\sqrt{9}}{1\%} + 2^7$
Steve Wilson, 1/22
Lawrence, KS
429 (2.8)
$\dfrac{.\overline{9}}{.2\%} - 71$
Steve Wilson, 12/16
Lawrence, KS
430 (2.4)
$\dfrac{9 \times .7 - 2}{1\%}$
Steve Wilson, 4/17
Lawrence, KS
  431 (2.6)
$\dfrac{7}{2\%} + \dfrac{9}{.\overline{1}}$
Steve Wilson, 4/17
Lawrence, KS
432 (2.4)
$\dfrac{97 - 1}{.\overline{2}}$
Steve Wilson, 8/18
Lawrence, KS
433 (2.2)
$\dfrac{9}{2\%} - 17$
Steve Wilson, 8/18
Lawrence, KS
434 (2.6)
$\dfrac{1}{.\overline{2}\%} - 9 - 7$
Steve Wilson, 8/18
Lawrence, KS
435 (2.2)
$\dfrac{9.7 - 1}{2\%}$
Steve Wilson, 8/18
Lawrence, KS
436 (2.8)
$\dfrac{97 - .\overline{1}}{.\overline{2}}$
Steve Wilson, 8/18
Lawrence, KS
437 (2.4)
$\dfrac{1}{.2\%} - 9 \times 7$
Steve Wilson, 9/18
Lawrence, KS
438 (2.4)
$\dfrac{9 - .1}{2\%} - 7$
Steve Wilson, 9/18
Lawrence, KS
439 (4.2)
$7^2 \times 9 + \log(1\%)$
Steve Wilson, 12/21
Lawrence, KS
440 (2.4)
$\dfrac{ \dfrac{7}{.2} + 9}{.1}$
Steve Wilson, 9/18
Lawrence, KS
  441 (2.2)
$\dfrac{7}{2\%} + 91$
Steve Wilson, 9/18
Lawrence, KS
442 (2.2)
$\dfrac{9}{2\%} - 7 - 1$
Steve Wilson, 9/18
Lawrence, KS
443 (2.2)
$\dfrac{9}{2\%} - 7 \times 1$
Steve Wilson, 8/19
Lawrence, KS
444 (2.2)
$\dfrac{9}{2\%} - 7 + 1$
Steve Wilson, 8/19
Lawrence, KS
445 (2.2)
$\dfrac{7.9 + 1}{2\%}$
Steve Wilson, 8/19
Lawrence, KS
446 (2.4)
$\dfrac{9 - (7 + 1)\%}{2\%}$
Steve Wilson, 11/19
Lawrence, KS
447 (2.4)
$\dfrac{9 - (7 - 1)\%}{2\%}$
Steve Wilson, 11/19
Lawrence, KS
448 (2.2)
$\dfrac{9.1}{2\%} - 7$
Steve Wilson, 11/19
Lawrence, KS
449 (3.2)
$\dfrac{9}{2\%} - 1^7$
Steve Wilson, 2/20
Lawrence, KS
450 (2.2)
$\dfrac{9 \times (7 - 2)}{.1}$
Steve Wilson, 11/19
Lawrence, KS
  451 (3.2)
$\dfrac{9}{2\%} + 1^7$
Steve Wilson, 2/20
Lawrence, KS
452 (2.4)
$\dfrac{9 - .1}{2\%} + 7$
Steve Wilson, 11/19
Lawrence, KS
453 (2.4)
$\dfrac{9 + (7-1)\%}{2\%}$
Steve Wilson, 12/19
Lawrence, KS
454 (2.4)
$\dfrac{9 + (7+1)\%}{2\%}$
Steve Wilson, 12/19
Lawrence, KS
455 (2.0)
$91 \times (7 - 2)$
Isabel C., 5/13
New York, NY
456 (2.2)
$\dfrac{9}{2\%} + 7 - 1$
Steve Wilson, 12/19
Lawrence, KS
457 (2.2)
$\dfrac{9}{2\%} + 7 \times 1$
Steve Wilson, 12/19
Lawrence, KS
458 (2.2)
$\dfrac{9}{2\%} + 7 + 1$
Steve Wilson, 12/19
Lawrence, KS
459 (2.8)
$\dfrac{1 + (9 - 7)\%}{.\overline{2}\%}$
Steve Wilson, 2/20
Lawrence, KS
460 (2.8)
$\dfrac{1 + 7.\overline{9}\%}{.2\%}$
Steve Wilson, 2/20
Lawrence, KS
  461 (4.8)
$\dfrac{9}{2\%} + 7 - \log(1\%\%)$
Steve Wilson, 3/22
Lawrence, KS
462 (2.2)
$\dfrac{9.1}{2\%} + 7$
Steve Wilson, 2/20
Lawrence, KS
463 (3.8)
$\dfrac{1 - (\sqrt{9})!\%}{2 \pm} - 7$
Steve Wilson, 1/22
Lawrence, KS
464 (4.6)
$2 \times 7 - \dfrac{9}{(\log(1\%))\%}$
Steve Wilson, 3/22
Lawrence, KS
465 (2.4)
$\dfrac{9 + 1 - .7}{2\%}$
Steve Wilson, 4/20
Lawrence, KS
466 (2.6)
$\dfrac{1}{.\overline{2}\%} + 7 + 9$
Steve Wilson, 4/20
Lawrence, KS
467 (2.2)
$\dfrac{9}{2\%} + 17$
Steve Wilson, 4/20
Lawrence, KS
468 (2.6)
$\dfrac{ \dfrac{9}{.2} + 7}{.\overline{1}}$
Steve Wilson, 4/20
Lawrence, KS
469 (3.6)
$(2 + 1\%) \times \dfrac{7}{(\sqrt{9})\%}$
Steve Wilson, 6/22
Lawrence, KS
470 (2.6)
$\dfrac{9 - 7\%}{(2 - .1)\%}$
Steve Wilson, 4/20
Lawrence, KS
  471 (3.8)
$\dfrac{1}{.\overline{2}\%} + 7 \times \sqrt{9}$
Steve Wilson, 2/22
Lawrence, KS
472 (3.6)
$\dfrac{(\sqrt{9})!}{1\%} - 2^7$
Steve Wilson, 6/22
Lawrence, KS
473 (4.2)
$2 \times ((\sqrt{9})!)! \times \sqrt{.\overline{1}} - 7$
Steve Wilson, 6/22
Lawrence, KS
474 (2.6)
$\dfrac{1 - 7\%}{.2\%} + 9$
Steve Wilson, 5/20
Lawrence, KS
475 (2.6)
$\dfrac{ \dfrac{9}{.\overline{2}} + 7}{.1}$
Steve Wilson, 5/20
Lawrence, KS
476 (2.8)
$\dfrac{.9}{.\overline{2}\%} + 71$
Steve Wilson, 5/20
Lawrence, KS
477 (3.8)
$\dfrac{1 - ((\sqrt{9})!)!}{2\pm} + 7$
Steve Wilson, 3/22
Lawrence, KS
478 (4.4)
$((\sqrt{9})!)! \times (.\overline{7} - .\overline{1}) - 2$
Steve Wilson, 3/22
Lawrence, KS
479 (3.4)
$\dfrac{1}{2 \pmf} - 7 \times \sqrt{9}$
Steve Wilson, 1/22
Lawrence, KS
480 (2.2)
$\dfrac{97 - 1}{.2}$
Steve Wilson, 5/20
Lawrence, KS
  481 (3.2)
$\dfrac{7^2}{.1} - 9$
Steve Wilson, 6/22
Lawrence, KS
482 (4.4)
$((\sqrt{9})!)! \times (.\overline{7} - .\overline{1}) + 2$
Jonathan Frank, 7/22
Rye, NY
483 (2.8)
$\dfrac{.\overline{9}}{.2\%} - 17$
Steve Wilson, 5/20
Lawrence, KS
484 (2.2)
$\dfrac{97}{.2} - 1$
Steve Wilson, 7/20
Lawrence, KS
485 (2.2)
$\dfrac{97}{2 \times .1}$
Margaret Wilson, 4/13
Atlanta, GA
486 (2.2)
$\dfrac{97}{.2} + 1$
Steve Wilson, 7/20
Lawrence, KS
487 (3.4)
$\dfrac{7^2}{.1} - \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
488 (3.0)
$\dfrac{.\overline{9} - 1\%}{.2\%} - 7$
Steve Wilson, 4/22
Lawrence, KS
489 (2.8)
$\dfrac{9.\overline{7}}{2\%} + .\overline{1}$
Steve Wilson, 7/20
Lawrence, KS
490 (2.2)
$\dfrac{97 + 1}{.2}$
Steve Wilson, 7/20
Lawrence, KS
  491 (2.2)
$\dfrac{7 - 2}{1\%} - 9$
Steve Wilson, 7/20
Lawrence, KS
492 (2.6)
$\dfrac{1}{.2\%} - 7.\overline{9}$
Steve Wilson, 8/20
Lawrence, KS
493 (2.0)
$17 \times 29$
Porter Adams, 4/13
Atlanta, GA
494 (2.8)
$\dfrac{1}{.2\%} - 7 + .\overline{9}$
Steve Wilson, 8/20
Lawrence, KS
495 (2.6)
$\dfrac{9 - .2}{1.\overline{7}\%}$
Steve Wilson, 8/20
Lawrence, KS
496 (3.4)
$\dfrac{1}{2\pmf} - \sqrt{9 + 7}$
Steve Wilson, 2/22
Lawrence, KS
497 (2.0)
$71 \times (9 - 2)$
Steve Wilson, 8/20
Lawrence, KS
498 (2.4)
$\dfrac{1}{.2\%} + 7 - 9$
Steve Wilson, 8/20
Lawrence, KS
499 (2.6)
$\dfrac{7 - 2}{1\%} - .\overline{9}$
Steve Wilson, 11/20
Lawrence, KS
500 (2.2)
$\dfrac{7 \times 2 - 9}{1\%}$
Steve Wilson, 11/20
Lawrence, KS
  501 (2.6)
$\dfrac{7 - 2}{1\%} + .\overline{9}$
Steve Wilson, 11/20
Lawrence, KS
502 (2.4)
$\dfrac{1}{.2\%} + 9 - 7$
Steve Wilson, 11/20
Lawrence, KS
503 (3.4)
$\dfrac{1^7}{2\pmf} + \sqrt{9}$
Steve Wilson, 3/22
Lawrence, KS
504 (3.0)
$2^9 - 7 - 1$
Steve Wilson, 12/20
Lawrence, KS
505 (3.0)
$2^9 - 7 \times 1$
Sierra Henricks, 2/14
Olathe, KS
506 (2.8)
$\dfrac{1}{.2\%} + 7 - .\overline{9}$
Steve Wilson, 12/20
Lawrence, KS
507 (2.2)
$\dfrac{1 + 9}{2\%} + 7$
Steve Wilson, 4/21
Lawrence, KS
508 (2.6)
$\dfrac{1}{.2\%} + 7.\overline{9}$
Steve Wilson, 4/21
Lawrence, KS
509 (2.2)
$\dfrac{7 - 2}{1\%} + 9$
Steve Wilson, 4/21
Lawrence, KS
510 (2.6)
$\dfrac{1 + (9 - 7)\%}{.2\%}$
Steve Wilson, 4/21
Lawrence, KS
  511 (3.0)
$2^9 - 1^7$
Greg Bayer, 8/19
Sydney, New South Wales
512 (3.0)
$2^9 \times 1^7$
Paolo Noya, 12/13
Bergamo, Italy
513 (2.0)
$19 \times 27$
Porter Adams, 4/13
Atlanta, GA
514 (3.2)
$(7 + 1)^{\sqrt{9}} + 2$
Steve Wilson, 12/21
Lawrence, KS
515 (3.4)
$7! \times .1 + 9 + 2$
Steve Wilson, 4/22
Lawrence, KS
516 (2.4)
$\dfrac{1}{.2\%} + 9 + 7$
Steve Wilson, 4/21
Lawrence, KS
517 (2.8)
$\dfrac{.\overline{9}}{.2\%} + 17$
Steve Wilson, 5/21
Lawrence, KS
518 (3.0)
$2^9 + 7 - 1$
Kyle Sanders, 5/13
Albany, NY
519 (3.0)
$2^9 + 7 \times 1$
Kyle Sanders, 5/13
Albany, NY
520 (2.4)
$\dfrac{9}{2\%} + \dfrac{7}{.1}$
Steve Wilson, 5/21
Lawrence, KS
  521 (2.2)
$\dfrac{9}{2\%} + 71$
Steve Wilson, 5/21
Lawrence, KS
522 (2.8)
$\dfrac{1 + (7 + 9)\%}{.\overline{2}\%}$
Steve Wilson, 5/21
Lawrence, KS
523 (4.0)
$7^{\sqrt{9}} + \dfrac{.2}{.\overline{1}\%}$
Steve Wilson, 12/21
Lawrence, KS
524 (3.6)
$\dfrac{1}{2\pmf} + (\sqrt{9 + 7})!$
Steve Wilson, 6/22
Lawrence, KS
525 (2.2)
$7 \times \dfrac{9}{.12}$
Justin Lanier, 4/13
Brooklyn, NY
526 (2.6)
$\dfrac{1 + 7\%}{.2\%} - 9$
Steve Wilson, 5/21
Lawrence, KS
527 (4.6)
$\dfrac{.\overline{1} + (7 - .\overline{9})\pmf}{.\overline{2}\pmf}$
Steve Wilson, 6/22
Lawrence, KS
528 (3.6)
$\dfrac{(\sqrt{9})!}{1\%} - 72$
Steve Wilson, 12/21
Lawrence, KS
529 (2.6)
$\dfrac{1}{.\overline{2}\%} + 79$
Steve Wilson, 6/21
Lawrence, KS
530 (3.8)
$\dfrac{1^7 + (\sqrt{9})!\%}{2\pmf}$
Steve Wilson, 6/22
Lawrence, KS
  531 (3.6)
$7! \times .\overline{1} - 29$
Steve Wilson, 6/22
Lawrence, KS
532 (3.6)
$\dfrac{1 + 7\%}{2\pmf} - \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
533 (3.4)
$7! \times .1 + 29$
Steve Wilson, 4/22
Lawrence, KS
534 (3.0)
$\dfrac{1 + 7\%}{.2\%} - .\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
535 (2.2)
$\dfrac{9.7 + 1}{2\%}$
Steve Wilson, 6/21
Lawrence, KS
536 (3.0)
$\dfrac{1 + 7\%}{.2\%} + .\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
537 (3.8)
$\dfrac{2}{\left(\sqrt{.\overline{1}}\right)\%} - 9 \times 7$
Steve Wilson, 6/22
Lawrence, KS
538 (2.6)
$\dfrac{1 + 9\%}{.2\%} - 7$
Steve Wilson, 6/21
Lawrence, KS
539 (3.2)
$\dfrac{7!}{9} - 21$
Jonathan Frank, 5/21
Rye, NY
540 (2.8)
$\dfrac{1 + 7.\overline{9}\%}{.2\%}$
Steve Wilson, 6/21
Lawrence, KS
  541 (3.8)
$\dfrac{1 + 7\%}{2\pmf} + (\sqrt{9})!$
Steve Wilson, 6/22
Lawrence, KS
542 (3.6)
$7! \times .\overline{1} - 2 \times 9$
Steve Wilson, 6/22
Lawrence, KS
543 (3.4)
$7^{\sqrt{9}} + \dfrac{2}{1\%}$
Steve Wilson, 4/22
Lawrence, KS
544 (2.6)
$\dfrac{1 + 7\%}{.2\%} + 9$
Steve Wilson, 6/21
Lawrence, KS
545 (3.4)
$\dfrac{1^7 + 9\%}{2\pmf}$
Steve Wilson, 6/22
Lawrence, KS
546 (3.4)
$91 \times (\sqrt{7 + 2})!$
Steve Wilson, 6/22
Lawrence, KS
547 (2.6)
$\dfrac{1}{.\overline{2}\%} + 97$
Steve Wilson, 7/21
Lawrence, KS
548 (3.2)
$\dfrac{7!}{9} - 12$
Jonathan Frank, 5/21
Rye, NY
549 (2.4)
$\dfrac{7 \times 9 - 2}{.\overline{1}}$
Steve Wilson, 7/21
Lawrence, KS
550 (2.2)
$\dfrac{9 - \dfrac72}{1\%}$
Steve Wilson, 7/21
Lawrence, KS
  551 (3.6)
$\dfrac{(\sqrt{9})!}{1\%} - 7^2$
Steve Wilson, 6/22
Lawrence, KS
552 (2.0)
$(7 - 1) \times 92$
Steve Wilson, 7/21
Lawrence, KS
553 (2.4)
$7 \times \left( \dfrac{9}{.\overline{1}} - 2 \right)$
Steve Wilson, 7/21
Lawrence, KS
554 (3.8)
$7! \times .\overline{1} - 2 \times \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
555 (3.8)
$7! \times .\overline{1} - 2 - \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
556 (4.6)
$\dfrac{7!}{9} - 2 + \log(1\%)$
Steve Wilson, 6/22
Lawrence, KS
557 (3.2)
$\dfrac{7!}{9} - 2 - 1$
Sophie Cox, 6/13
Perth, Western Australia
558 (3.2)
$\dfrac{7!}{9} - 2 \times 1$
Jonathan Frank, 5/21
Rye, NY
559 (3.2)
$\dfrac{7!}{9} - 2 + 1$
Jonathan Frank, 6/21
Rye, NY
560 (2.8)
$(1 - .2) \times \dfrac{7}{.\overline{9}\%}$
Steve Wilson, 8/21
Lawrence, KS
  561 (3.2)
$\dfrac{7!}{9} + 2 - 1$
Jonathan Frank, 6/21
Rye, NY
562 (3.2)
$\dfrac{7!}{9} \times 1 + 2$
Leif Muhammad, 3/14
Kansas City, MO
563 (2.4)
$\dfrac{1}{.2\%} + 7 \times 9$
Steve Wilson, 8/21
Lawrence, KS
564 (4.4)
$9^2 \times 7 + \log(1\pm)$
Steve Wilson, 6/22
Lawrence, KS
565 (2.4)
$\dfrac{7 \times 9}{.\overline{1}} - 2$
Steve Wilson, 8/21
Lawrence, KS
566 (3.0)
$7 \times 9^2 - 1$
Paolo Noya, 12/13
Bergamo, Italy
567 (2.4)
$\dfrac{72 - 9}{.\overline{1}}$
Steve Wilson, 8/21
Lawrence, KS
568 (3.0)
$7 \times 9^2 + 1$
Paolo Noya, 12/13
Bergamo, Italy
569 (2.4)
$\dfrac{7 \times 9}{.\overline{1}} + 2$
Steve Wilson, 8/21
Lawrence, KS
570 (2.8)
$\dfrac{ \dfrac{.\overline{9}}{2\%} + 7}{.1}$
Steve Wilson, 9/21
Lawrence, KS
  571 (2.8)
$\dfrac{.\overline{9}}{.2\%} + 71$
Steve Wilson, 9/21
Lawrence, KS
572 (3.2)
$\dfrac{7!}{9} + 12$
Jonathan Frank, 6/21
Rye, NY
573 (3.6)
$\dfrac{(\sqrt{9})!}{1\%} - 27$
Steve Wilson, 6/22
Lawrence, KS
574 (3.0)
$(9^2 + 1) \times 7$
Lynne Erwin, 6/16
Overland Park, KS
575 (3.4)
$\sqrt[.\overline{1}]{2} + 7 \times 9$
Steve Wilson, 6/22
Lawrence, KS
576 (2.0)
$72 \times (9 - 1)$
Steve Wilson, 9/21
Lawrence, KS
577 (3.4)
$(7 - \sqrt{9})!^2 + 1$
Steve Wilson, 6/22
Lawrence, KS
578 (3.6)
$7! \times .\overline{1} + 2 \times 9$
Steve Wilson, 6/22
Lawrence, KS
579 (2.4)
$\dfrac{1}{.2\%} + 79$
Steve Wilson, 9/21
Lawrence, KS
580 (2.6)
$\dfrac{1 + (7 + 9)\%}{.2\%}$
Steve Wilson, 9/21
Lawrence, KS
  581 (2.4)
$7 \times \left( \dfrac{9}{.\overline{1}} + 2 \right)$
Steve Wilson, 10/21
Lawrence, KS
582 (3.2)
$2^9 + \dfrac{7}{.1}$
Steve Wilson, 4/22
Lawrence, KS
583 (3.0)
$2^9 + 71$
Iris Behm, 2/14
Lenexa, KS
584 (3.8)
$\dfrac{2}{\left(\sqrt{.\overline{1}}\right)\%} - 9 - 7$
Steve Wilson, 6/22
Lawrence, KS
585 (2.4)
$\dfrac{7 \times 9 + 2}{.\overline{1}}$
Steve Wilson, 10/21
Lawrence, KS
586 (3.6)
$\dfrac{(\sqrt{9})!}{1\%} - 7 \times 2$
Steve Wilson, 6/22
Lawrence, KS
587 (3.8)
$\dfrac{(\sqrt{9})! - .2}{1\%} + 7$
Steve Wilson, 6/22
Lawrence, KS
588 (4.8)
$7 \times \left( 9^2 + \cot\arcsin\sqrt{.1} \right)$
Steve Wilson, 6/22
Lawrence, KS
589 (3.6)
$7! \times .\overline{1} + 29$
Steve Wilson, 6/22
Lawrence, KS
590 (2.2)
$\dfrac{7.9 - 2}{1\%}$
Steve Wilson, 10/21
Lawrence, KS
  591 (3.4)
$\sqrt[.\overline{1}]{2} + 79$
Steve Wilson, 6/22
Lawrence, KS
592 (4.0)
$\dfrac{2}{\left(\sqrt{.\overline{1}}\right)\%} - 7.\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
593 (3.8)
$\dfrac{(\sqrt{9})!}{1\%} - \sqrt{7^2}$
Steve Wilson, 6/22
Lawrence, KS
594 (3.8)
$\dfrac{72 - (\sqrt{9})!}{.\overline{1}}$
Steve Wilson, 12/24
Lawrence, KS
595 (3.6)
$\dfrac{(\sqrt{9})!}{1\%} - 7 + 2$
Steve Wilson, 6/22
Lawrence, KS
596 (3.4)
$7! \times .1 + 92$
Steve Wilson, 5/22
Lawrence, KS
597 (2.4)
$\dfrac{1}{.2\%} + 97$
Steve Wilson, 10/21
Lawrence, KS
598 (2.6)
$\dfrac{7 - 1}{.\overline{9}\%} - 2$
Steve Wilson, 10/21
Lawrence, KS
599 (3.8)
$((\sqrt{9})!)! - (7 - 2)! - 1$
Steve Wilson, 5/22
Lawrence, KS
600 (2.2)
$\dfrac{12}{(9 - 7)\%}$
Steve Wilson, 11/21
Lawrence, KS
  601 (2.8)
$\dfrac{.7}{.\overline{1}\%} - 29$
Steve Wilson, 11/21
Lawrence, KS
602 (2.6)
$\dfrac{7 - 1}{.\overline{9}\%} + 2$
Steve Wilson, 11/21
Lawrence, KS
603 (3.8)
$\dfrac{(\sqrt{9})!}{1\%} + \sqrt{7 + 2}$
Steve Wilson, 6/22
Lawrence, KS
604 (4.0)
$\dfrac{2}{\left(\sqrt{.\overline{1}}\right)\%} + 7 - \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
605 (3.6)
$\dfrac{(\sqrt{9})!}{1\%} + 7 - 2$
Steve Wilson, 6/22
Lawrence, KS
606 (4.2)
$\dfrac{2}{\left( \sqrt{.\overline{1}} \right)\%} + 7 - .\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
607 (3.8)
$\dfrac{(\sqrt{9})!}{1\%} + \sqrt{7^2}$
Steve Wilson, 6/22
Lawrence, KS
608 (2.2)
$\dfrac{7}{1\%} - 92$
Steve Wilson, 11/21
Lawrence, KS
609 (3.4)
$\sqrt[.\overline{1}]{2} + 97$
Steve Wilson, 6/22
Lawrence, KS
610 (2.2)
$\dfrac{7 \times 9 - 2}{.1}$
Steve Wilson, 11/21
Lawrence, KS
  611 (5.0)
$\dfrac{7 - .9}{1\%} + \tan\arcsec\sqrt{2}$
Steve Wilson, 6/22
Lawrence, KS
612 (2.2)
$\left( \dfrac{7}{.1} - 2 \right) \times 9$
Steve Wilson, 5/22
Lawrence, KS
613 (3.8)
$\dfrac{(\sqrt{9})! + .2}{1\%} - 7$
Steve Wilson, 6/22
Lawrence, KS
614 (3.6)
$\dfrac{(\sqrt{9})!}{1\%} + 7 \times 2$
Steve Wilson, 6/22
Lawrence, KS
615 (4.2)
$\dfrac{.7}{.\overline{1}\%} - \dfrac{\sqrt{9}}{.2}$
Steve Wilson, 6/22
Lawrence, KS
616 (2.2)
$\left( \dfrac{9}{.1} - 2 \right) \times 7$
Steve Wilson, 5/22
Lawrence, KS
617 (4.8)
$\dfrac{\sqrt{9}}{(\cot\arctan 2)\%} + 17$
Steve Wilson, 6/22
Lawrence, KS
618 (4.2)
$\dfrac{.7}{.\overline{1}\%} - 2 \times (\sqrt{9})!$
Steve Wilson, 6/22
Lawrence, KS
619 (2.8)
$\dfrac{.7}{.\overline{1}\%} - 9 - 2$
Steve Wilson, 5/22
Lawrence, KS
620 (2.6)
$\dfrac{7.2 - 1}{.\overline{9}\%}$
Steve Wilson, 6/22
Lawrence, KS
  621 (2.0)
$(71 - 2) \times 9$
Steve Wilson, 6/22
Lawrence, KS
622 (4.2)
$\dfrac{.7}{.\overline{1}\%} - (\sqrt{9})! - 2$
Steve Wilson, 6/22
Lawrence, KS
623 (2.0)
$(91 - 2) \times 7$
Steve Wilson, 6/22
Lawrence, KS
624 (4.0)
$\dfrac{.7}{.\overline{1}\%} - 2 \times \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
625 (2.4)
$\dfrac{2 - 1}{(7 + 9)\%\%}$
Steve Wilson, 6/22
Lawrence, KS
626 (4.2)
$\dfrac{.7}{.\overline{1}\%} - (\sqrt{9})! + 2$
Steve Wilson, 6/22
Lawrence, KS
627 (2.4)
$\dfrac{1}{(7 + 9)\%\%} + 2$
Steve Wilson, 6/22
Lawrence, KS
628 (2.2)
$7 \times \dfrac{9}{.1} - 2$
Echo Anderson, 12/13
Lenexa, KS
629 (3.6)
$((\sqrt{7 + 2})!)! - 91$
Steve Wilson, 6/22
Lawrence, KS
630 (2.2)
$\dfrac{72 - 9}{.1}$
Steve Wilson, 6/22
Lawrence, KS
  631 (4.0)
$\dfrac{.7}{.\overline{1}\%} + \sqrt{9} - 2$
Steve Wilson, 6/22
Lawrence, KS
632 (2.2)
$7 \times \dfrac{9}{.1} + 2$
Echo Anderson, 12/13
Lenexa, KS
633 (3.8)
$\dfrac{.7}{.\overline{1}\%} + \sqrt[2]{9}$
Steve Wilson, 6/22
Lawrence, KS
634 (4.2)
$\dfrac{.7}{.\overline{1}\%} + (\sqrt{9})! - 2$
Steve Wilson, 6/22
Lawrence, KS
635 (2.0)
$91 \times 7 - 2$
Iris Behm, 1/14
Lenexa, KS
636 (4.0)
$\dfrac{.7}{.\overline{1}\%} + 2 \times \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
637 (2.0)
$71 \times 9 - 2$
Steve Wilson, 6/22
Lawrence, KS
638 (4.2)
$\dfrac{.7}{.\overline{1}\%} + (\sqrt{9})! + 2$
Steve Wilson, 6/22
Lawrence, KS
639 (2.0)
$91 \times 7 + 2$
Iris Behm, 1/14
Lenexa, KS
640 (2.4)
$72 \times (9 - .\overline{1})$
Steve Wilson, 6/22
Lawrence, KS
  641 (2.0)
$71 \times 9 + 2$
Steve Wilson, 6/22
Lawrence, KS
642 (3.8)
$\dfrac{72}{.\overline{1}} - (\sqrt{9})!$
Steve Wilson, 12/24
Lawrence, KS
643 (2.0)
$92 \times 7 - 1$
Agnieszka Hajnas, 5/13
Kansas City, MO
644 (2.0)
$92 \times 7 \times 1$
Steve Wilson, 8/13
Lawrence, KS
645 (2.0)
$92 \times 7 + 1$
Daniella Donofrio, 5/13
Olathe, KS
646 (3.4)
$(7 - 1)! \times .9 - 2$
Steve Wilson, 7/22
Lawrence, KS
647 (2.0)
$72 \times 9 - 1$
Daniella Donofrio, 5/13
Olathe, KS
648 (2.0)
$72 \times 9 \times 1$
Kendra Stindt, 8/13
Topeka, KS
649 (2.0)
$72 \times 9 + 1$
Daniella Donofrio, 5/13
Olathe, KS
650 (2.2)
$\dfrac{91}{7 \times 2\%}$
David Anderson, 2/14
Olathe, KS
  651 (2.0)
$(92 + 1) \times 7$
Steve Wilson, 6/22
Lawrence, KS
652 (3.6)
$7! \times .\overline{1} + 92$
Steve Wilson, 6/22
Lawrence, KS
653 (4.2)
$\dfrac{.7\overline{2}}{.\overline{1}\%} + \sqrt{9}$
Steve Wilson, 7/22
Lawrence, KS
654 (3.8)
$\dfrac{72}{.\overline{1}} + (\sqrt{9})!$
Steve Wilson, 12/24
Lawrence, KS
655 (2.4)
$\dfrac{7}{1\%} - \dfrac{9}{.2}$
Steve Wilson, 6/22
Lawrence, KS
656 (2.2)
$72 \times 9.\overline{1}$
Steve Wilson, 6/22
Lawrence, KS
657 (2.0)
$(72 + 1) \times 9$
Steve Wilson, 6/22
Lawrence, KS
658 (4.4)
$7 \times (92 - \log(1\%))$
Steve Wilson, 7/22
Lawrence, KS
659 (2.8)
$\dfrac{.7}{.\overline{1}\%} + 29$
Steve Wilson, 6/22
Lawrence, KS
660 (4.4)
$\dfrac{.7}{.\overline{1}\%} + \dfrac{(\sqrt{9})!}{.2}$
Steve Wilson, 6/22
Lawrence, KS
  661 (5.2)
$\dfrac{7 - .2}{1\%} + \tanh\ln\sqrt{.9}$
Steve Wilson, 12/24
Lawrence, KS
662 (4.6)
$\dfrac{7}{1\%} - \sinh(9 \times \arcsch 2)$
Steve Wilson, 12/24
Lawrence, KS
663 (3.8)
$\dfrac{2}{\left( \sqrt{.\overline{1}} \right)\%} + 9 \times 7$
Steve Wilson, 6/22
Lawrence, KS
664 (3.6)
$\dfrac{7}{1\%} - (\sqrt{9})!^2$
Steve Wilson, 7/22
Lawrence, KS
665 (2.2)
$19 \times \dfrac{7}{.2}$
Echo Anderson, 11/13
Lenexa, KS
666 (4.2)
$\dfrac{.7}{.\overline{1}\%} + ((\sqrt{9})!)^2$
Steve Wilson, 6/22
Lawrence, KS
667 (5.2)
$\dfrac{7 - \sqrt{9\%}}{1\%} - \coth\ln\sqrt{2}$
Steve Wilson, 12/24
Lawrence, KS
668 (3.6)
$\dfrac{7 - \sqrt{9\%}}{1\%} - 2$
Steve Wilson, 7/22
Lawrence, KS
669 (4.8)
$92 + \coth\ln\coth\arcosh 17$
Steve Wilson, 12/24
Lawrence, KS
670 (2.6)
$\dfrac{7 - .2\overline{9}}{1\%}$
Steve Wilson, 6/22
Lawrence, KS
  671 (2.2)
$\dfrac{7}{1\%} - 29$
Jonathan Frank, 1/22
Rye, NY
672 (3.6)
$((\sqrt{9})!)! - 7^2 + 1$
Steve Wilson, 6/22
Lawrence, KS
673 (5.0)
$\dfrac{7}{1\%} - \sqrt{9^{\coth\ln\sqrt{2}}}$
Steve Wilson, 12/24
Lawrence, KS
674 (3.8)
$\dfrac{7 - .2}{1\%} - (\sqrt{9})!$
Steve Wilson, 7/22
Lawrence, KS
675 (2.6)
$\dfrac{9}{.\overline{2} \times (7 - 1)\%}$
Steve Wilson, 6/22
Lawrence, KS
676 (3.8)
$\dfrac{7}{1\%} - ((\sqrt{9})! - 2)!$
Steve Wilson, 7/22
Lawrence, KS
677 (3.6)
$\dfrac{7 - .2}{1\%} - \sqrt{9}$
Steve Wilson, 7/22
Lawrence, KS
678 (3.8)
$((\sqrt{9})!)! - 7 \times (2 + 1)!$
Steve Wilson, 7/22
Lawrence, KS
679 (2.6)
$\dfrac{7}{.\overline{9}\%} - 21$
Steve Wilson, 6/22
Lawrence, KS
680 (2.6)
$\dfrac{7 - .2}{.1 - 9\%}$
Steve Wilson, 6/22
Lawrence, KS
  681 (2.8)
$\dfrac{7 - .2}{.\overline{9}\%} + 1$
Steve Wilson, 6/22
Lawrence, KS
682 (2.2)
$\dfrac{7}{1\%} - 9 \times 2$
Jonathan Frank, 2/22
Rye, NY
683 (4.6)
$2 \times 7^{\sqrt{9}} + \log(1\pm)$
Steve Wilson, 7/22
Lawrence, KS
684 (2.4)
$\dfrac{19}{2.\overline{7}\%}$
Steve Wilson, 6/22
Lawrence, KS
685 (3.2)
$2 \times 7^{\sqrt{9}} - 1$
Steve Wilson, 6/22
Lawrence, KS
686 (2.6)
$\left( \dfrac{1}{.\overline{9}\%} - 2 \right) \times 7$
Steve Wilson, 6/22
Lawrence, KS
687 (3.2)
$2 \times 7^{\sqrt{9}} + 1$
Steve Wilson, 6/22
Lawrence, KS
688 (2.6)
$\dfrac{7}{.\overline{9}\%} - 12$
Steve Wilson, 6/22
Lawrence, KS
689 (2.2)
$\dfrac{7}{1\%} - 9 - 2$
Jonathan Frank, 2/22
Rye, NY
690 (2.8)
$\dfrac{7 - .1}{(2 - .\overline{9})\%}$
Steve Wilson, 6/22
Lawrence, KS
  691 (2.2)
$\dfrac{7}{(2 - 1)\%} - 9$
Steve Wilson, 6/22
Lawrence, KS
692 (2.8)
$\dfrac{7 - .1}{.\overline{9}\%} + 2$
Steve Wilson, 6/22
Lawrence, KS
693 (2.2)
$\dfrac{7}{1\%} - 9 + 2$
Jonathan Frank, 2/22
Rye, NY
694 (3.4)
$\dfrac{7}{1\%} - 2 \times \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
695 (2.8)
$\dfrac{7 - \dfrac{.1}{2}}{.\overline{9}\%}$
Steve Wilson, 6/22
Lawrence, KS
696 (3.8)
$((\sqrt{9})!)! - (7 - 2 - 1)!$
Steve Wilson, 6/22
Lawrence, KS
697 (2.4)
$\dfrac{7}{1\%} - 2.\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
698 (2.4)
$\dfrac{7}{.1 - 9\%} - 2$
Steve Wilson, 6/22
Lawrence, KS
699 (2.6)
$\dfrac{7}{.\overline{9}\%} - 2 + 1$
Steve Wilson, 6/22
Lawrence, KS
700 (2.2)
$\dfrac{2}{\left( \dfrac97 - 1 \right)\%}$
Steve Wilson, 6/22
Lawrence, KS
  701 (2.6)
$\dfrac{7}{(2 - 1)\%} + .\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
702 (2.4)
$\dfrac{7}{.1 - 9\%} + 2$
Steve Wilson, 6/22
Lawrence, KS
703 (2.0)
$712 - 9$
Emily Boudville, 6/13
Perth, Western Australia
704 (3.4)
$((2 + 1)!)! - 9 - 7$
Gregory Bayer, 2/20
Sydney, New South Wales
705 (2.8)
$\dfrac{ \dfrac{.1}{2} + 7}{.\overline{9}\%}$
Steve Wilson, 6/22
Lawrence, KS
706 (3.4)
$\dfrac{7}{1\%} + 2 \times \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
707 (2.2)
$\dfrac{7}{1\%} + 9 - 2$
Jonathan Frank, 12/21
Rye, NY
708 (2.6)
$\dfrac{7.1}{.\overline{9}\%} - 2$
Steve Wilson, 6/22
Lawrence, KS
709 (2.2)
$\dfrac{7}{(2 - 1)\%} + 9$
Steve Wilson, 6/22
Lawrence, KS
710 (2.6)
$\dfrac{7.1}{(2 - .\overline{9})\%}$
Steve Wilson, 6/22
Lawrence, KS
  711 (2.2)
$\dfrac{7}{1\%} + 9 + 2$
Jonathan Frank, 1/22
Rye, NY
712 (2.0)
$721 - 9$
Steve Wilson, 6/22
Lawrence, KS
713 (2.2)
$712.\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
714 (2.6)
$\left( \dfrac{1}{.\overline{9}\%} + 2 \right) \times 7$
Steve Wilson, 6/22
Lawrence, KS
715 (3.4)
$721 - (\sqrt{9})!$
Steve Wilson, 6/22
Lawrence, KS
716 (3.6)
$((\sqrt{9})!)! - 7 + 2 + 1$
Steve Wilson, 6/22
Lawrence, KS
717 (2.0)
$719 - 2$
Steve Wilson, 6/22
Lawrence, KS
718 (2.2)
$\dfrac{7}{1\%} + 9 \times 2$
Jonathan Frank, 1/22
Rye, NY
719 (2.6)
$\dfrac{7.2}{1\%} - .\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
720 (2.0)
$72 \times (9 + 1)$
Steve Wilson, 6/22
Lawrence, KS
  721 (2.0)
$712 + 9$
Steve Wilson, 8/13
Lawrence, KS
722 (2.2)
$721.\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
723 (3.4)
$(7 - 1)! + 2.\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
724 (3.2)
$721 + \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
725 (3.4)
$(7 - 1)! + 2 + \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
726 (3.4)
$(7 - 1)! + 2 \times \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
727 (3.4)
$(\sqrt{9} + 2 + 1)! + 7$
Gregory Bayer, 2/20
Sydney, New South Wales
728 (2.0)
$729 - 1$
Lisa Downing, 4/13
Simpsonville, SC
729 (2.0)
$729 \times 1$
Michael Caldwell, 3/13
Olathe, KS
730 (2.0)
$729 + 1$
Lisa Downing, 4/13
Simpsonville, SC
  731 (3.2)
$(7 - 1)! + 2 + 9$
Gregory Bayer, 3/20
Sydney, New South Wales
732 (3.6)
$(7 - 1)! + 2 \times (\sqrt{9})!$
Steve Wilson, 6/22
Lawrence, KS
733 (3.6)
$((\sqrt{9})!)! + 2 \times 7 - 1$
Steve Wilson, 6/22
Lawrence, KS
734 (3.6)
$((\sqrt{9})!)! + 21 - 7$
Steve Wilson, 6/22
Lawrence, KS
735 (3.6)
$((\sqrt{9})!)! + 17 - 2$
Steve Wilson, 6/22
Lawrence, KS
736 (2.0)
$92 \times (7 + 1)$
Steve Wilson, 6/22
Lawrence, KS
737 (3.4)
$(2 \times \sqrt{9})! + 17$
Steve Wilson, 6/22
Lawrence, KS
738 (2.8)
$\dfrac{.9}{.\overline{1}\%} - 72$
Steve Wilson, 6/22
Lawrence, KS
739 (3.6)
$((\sqrt{9})!)! + 12 + 7$
Steve Wilson, 6/22
Lawrence, KS
740 (3.8)
$(7 - .\overline{9})! + \dfrac{2}{.1}$
Steve Wilson, 6/22
Lawrence, KS
  741 (3.6)
$((\sqrt{9})!)! + 7 \times (2 + 1)$
Steve Wilson, 6/22
Lawrence, KS
742 (3.8)
$\left( .1^{-2} + (\sqrt{9})! \right) \times 7$
Steve Wilson, 6/22
Lawrence, KS
743 (2.2)
$\dfrac{9}{1.2\%} - 7$
Steve Wilson, 6/22
Lawrence, KS
744 (3.8)
$((\sqrt{9})!)! + (7 - 2 - 1)!$
Steve Wilson, 6/22
Lawrence, KS
745 (2.4)
$\dfrac{7}{1\%} + \dfrac{9}{.2}$
Steve Wilson, 6/22
Lawrence, KS
746 (3.6)
$((\sqrt{9})!)! + 27 - 1$
Steve Wilson, 6/22
Lawrence, KS
747 (3.6)
$((\sqrt{9})!)! + 27 \times 1$
Steve Wilson, 6/22
Lawrence, KS
748 (3.6)
$((\sqrt{9})!)! + 27 + 1$
Steve Wilson, 6/22
Lawrence, KS
749 (3.2)
$(7 - 1)! + 29$
Steve Wilson, 6/22
Lawrence, KS
750 (2.2)
$\dfrac{9 + 7 - 1}{2\%}$
Steve Wilson, 6/22
Lawrence, KS
  751 (4.0)
$\dfrac{2}{\left(\sqrt{7.\overline{1}}\right)\pmf} + .\overline{9}$
Steve Wilson, 12/24
Lawrence, KS
752 (4.2)
$((\sqrt{9})!)! + \dfrac{7.\overline{1}}{.\overline{2}}$
Steve Wilson, 6/22
Lawrence, KS
753 (3.8)
$\dfrac{2}{\left(\sqrt{7.\overline{1}}\right)\pmf} + \sqrt{9}$
Steve Wilson, 12/24
Lawrence, KS
754 (3.8)
$((\sqrt{9})!)! + \dfrac{7}{.2} - 1$
Steve Wilson, 6/22
Lawrence, KS
755 (2.8)
$\dfrac{ \dfrac{.9}{.\overline{1}} + 7}{2\%}$
Steve Wilson, 6/22
Lawrence, KS
756 (2.0)
$12 \times 7 \times 9$
Agnieszka Hajnas, 5/13
Kansas City, MO
757 (2.2)
$\dfrac{9}{1.2\%} + 7$
Steve Wilson, 6/22
Lawrence, KS
758 (5.2)
$((\sqrt{9})!)! + \dfrac{7}{.2} - \log(1\pm)$
Steve Wilson, 7/22
Lawrence, KS
759 (3.6)
$\dfrac{2}{\left(\sqrt{7.\overline{1}}\right)\pmf} + 9$
Steve Wilson, 12/24
Lawrence, KS
760 (2.4)
$\dfrac{9 - 7 \times .2}{1\%}$
Steve Wilson, 6/22
Lawrence, KS
  761 (3.8)
$\dfrac{.9}{.\overline{1}\%} - 7^2$
Steve Wilson, 6/22
Lawrence, KS
762 (3.8)
$((\sqrt{9})!)! + 7 \times (2 + 1)!$
Steve Wilson, 6/22
Lawrence, KS
763 (3.4)
$\left( .1^{-2} + 9 \right) \times 7$
Steve Wilson, 6/22
Lawrence, KS
764 (3.8)
$\sqrt[\sqrt{.\overline{1}}]{9} + \dfrac{7}{.2}$
Steve Wilson, 6/22
Lawrence, KS
765 (2.2)
$17 \times \dfrac{9}{.2}$
Echo Anderson, 11/13
Lenexa, KS
766 (3.0)
$\dfrac{1.7}{.\overline{2}\%} + .\overline{9}$
Steve Wilson, 7/22
Lawrence, KS
767 (5.0)
$\dfrac{7 - .1}{9\pmf} + \tanh\ln\sqrt{2}$
Steve Wilson, 12/24
Lawrence, KS
768 (3.2)
$2^{7+1} \times \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
769 (3.6)
$((\sqrt{9})!)! + 7^2 \times 1$
Steve Wilson, 6/22
Lawrence, KS
770 (2.2)
$(9 + 2) \times \dfrac{7}{.1}$
Steve Wilson, 6/22
Lawrence, KS
  771 (4.0)
$\dfrac{1.7}{.\overline{2}\%} + (\sqrt{9})!$
Steve Wilson, 6/22
Lawrence, KS
772 (3.2)
$\dfrac{9}{1\%} - 2^7$
Steve Wilson, 6/22
Lawrence, KS
773 (4.4)
$\dfrac{(\sqrt{9})! + 1.\overline{2}\%}{.\overline{7}\%}$
Steve Wilson, 7/22
Lawrence, KS
774 (2.6)
$\dfrac{1.7}{.\overline{2}\%} + 9$
Steve Wilson, 6/22
Lawrence, KS
775 (3.0)
$\dfrac{.9}{.\overline{1}\%} - \dfrac{7}{.2}$
Steve Wilson, 6/22
Lawrence, KS
776 (4.8)
$\dfrac{7 + 2\pmf}{9\pmf} + \log(1\%)$
Steve Wilson, 12/24
Lawrence, KS
777 (2.8)
$\dfrac{7 + .2\%}{.9\%} - 1$
Steve Wilson, 6/22
Lawrence, KS
778 (2.4)
$\dfrac{ \dfrac{7}{.1\%} + 2}{9}$
Steve Wilson, 6/22
Lawrence, KS
779 (2.6)
$\dfrac{7}{.9\%} + 1.\overline{2}$
Steve Wilson, 6/22
Lawrence, KS
780 (2.4)
$\dfrac{ \dfrac{7}{1\%} + 2}{.9}$
Steve Wilson, 6/22
Lawrence, KS
  781 (2.0)
$71 \times (9 + 2)$
Steve Wilson, 6/22
Lawrence, KS
782 (4.6)
$792 - \cot\arctan(.1)$
Steve Wilson, 7/22
Lawrence, KS
783 (2.8)
$\dfrac{.9}{.\overline{1}\%} - 27$
Steve Wilson, 6/22
Lawrence, KS
784 (3.2)
$\left( 7 \times \left( \sqrt{9} + 1 \right)\right)^2$
Steve Wilson, 6/22
Lawrence, KS
785 (4.0)
$((\sqrt{9})!)! + \dfrac{7}{.\overline{1}} + 2$
Steve Wilson, 6/22
Lawrence, KS
786 (4.4)
$(.\overline{1}\%)^{-2} \pm - (\sqrt{9 + 7})!$
Steve Wilson, 6/22
Lawrence, KS
787 (4.8)
$\dfrac{7.9}{1\%} - \coth\ln\sqrt{2}$
Steve Wilson, 7/22
Lawrence, KS
788 (2.2)
$\dfrac{7.9}{1\%} - 2$
Steve Wilson, 6/22
Lawrence, KS
789 (2.0)
$791 - 2$
Bing Guo, 10/13
Lawrence, KS
790 (2.2)
$\dfrac{7.9}{(2 - 1)\%}$
Steve Wilson, 6/22
Lawrence, KS
  791 (2.0)
$792 - 1$
Barret Seagroves, 4/13
Atlanta, GA
792 (2.0)
$792 \times 1$
Barret Seagroves, 4/13
Atlanta, GA
793 (2.0)
$792 + 1$
Barret Seagroves, 4/13
Atlanta, GA
794 (4.2)
$\dfrac{1.\overline{7}}{.\overline{2}\%} - (\sqrt{9})!$
Steve Wilson, 6/22
Lawrence, KS
795 (2.4)
$\dfrac{9 + 7 - .1}{2\%}$
Steve Wilson, 6/22
Lawrence, KS
796 (2.8)
$\dfrac{.9}{.\overline{1}\%} - 2 \times 7$
Steve Wilson, 6/22
Lawrence, KS
797 (4.0)
$\dfrac{1.\overline{7}}{.\overline{2}\%} - \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
798 (2.4)
$\dfrac{7.\overline{9}}{1\%} - 2$
Steve Wilson, 6/22
Lawrence, KS
799 (2.2)
$\dfrac{72}{9\%} - 1$
Jonathan Frank, 4/22
Rye, NY
800 (2.2)
$\dfrac{72}{9\%} \times 1$
Jonathan Frank, 3/22
Rye, NY

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201-4000), Page 11 (4001+).