\( \def\pm{{ ‰}} \def\pmf{{ ‰ \phantom.}} \def\pmm{{ ‰ \! ‰}} \def\pmmf{{ ‰ \! ‰ \phantom\%}} \DeclareMathOperator {\antilog} {antilog} \DeclareMathOperator {\arcsec} {arcsec} \DeclareMathOperator {\arcosh} {arcosh} \DeclareMathOperator {\arcsch} {arcsch} \)

Integermania!

Ramanujan

Srinivasa Ramanujan (1887-1920) was a largely self-taught mathematician from India, some of whose results still inspire research today. Once, when ill in the hospital in England, he was visited by fellow mathematician G. H. Hardy (1877-1947), who later wrote:

"I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. "No," he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways."

Using one copy each of the digits 1, 7, 2, and 9, and any standard operations, create each of the positive integers. All four numbers must be used, but no others. Your solutions will be assigned an exquisiteness level.

Powered by MathJax
We use MathJax

Use the online submissions page to get your Integermania solutions posted here! This problem is now in semi-retired status, so you may submit an unlimited number of solutions each month.

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201-4000), Page 11 (4001+).

  801 (2.2)
$\dfrac{72}{9\%} + 1$
Jonathan Frank, 4/22
Rye, NY
802 (2.4)
$\dfrac{7.\overline{9}}{1\%} + 2$
Steve Wilson, 6/22
Lawrence, KS
803 (3.2)
$\dfrac{9^2}{.1} - 7$
Steve Wilson, 6/22
Lawrence, KS
804 (3.6)
$((\sqrt{9})!)! + 7 \times 12$
Steve Wilson, 6/22
Lawrence, KS
805 (2.2)
$\dfrac{9 + 7.1}{2\%}$
Steve Wilson, 6/22
Lawrence, KS
806 (4.2)
$\dfrac{1.\overline{7}}{.\overline{2}\%} + (\sqrt{9})!$
Steve Wilson, 6/22
Lawrence, KS
807 (3.4)
$\dfrac{2^{\sqrt{9}}}{1\%} + 7$
Steve Wilson, 6/22
Lawrence, KS
808 (4.0)
$(.\overline{1}\%)^{-2}\pm - 9 + 7$
Steve Wilson, 6/22
Lawrence, KS
809 (2.8)
$\dfrac{1.\overline{7}}{.\overline{2}\%} + 9$
Steve Wilson, 6/22
Lawrence, KS
810 (2.2)
$(7 + 2) \times \dfrac{9}{.1}$
Steve Wilson, 6/22
Lawrence, KS
  811 (3.6)
$((\sqrt{7 + 2})!)! + 91$
Steve Wilson, 6/22
Lawrence, KS
812 (3.2)
$(7 - 1)! + 92$
Steve Wilson, 6/22
Lawrence, KS
813 (3.2)
$271 \times \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
814 (4.2)
$(.\overline{1}\%)^{-2}\pm + 7 - \sqrt{9}$
Steve Wilson, 4/23
Lawrence, KS
815 (2.6)
$\dfrac{1 + 9 \times 7\%}{.2\%}$
Steve Wilson, 6/22
Lawrence, KS
816 (4.2)
$\dfrac{.9}{.\overline{1}\%} + (\sqrt{7 + 2})!$
Steve Wilson, 6/22
Lawrence, KS
817 (3.2)
$\dfrac{9^2}{.1} + 7$
Steve Wilson, 6/22
Lawrence, KS
818 (3.0)
$\dfrac{.\overline{9}}{.\overline{12}\%} - 7$
Steve Wilson, 12/24
Lawrence, KS
819 (2.0)
$91 \times (7 + 2)$
Steve Wilson, 6/22
Lawrence, KS
820 (2.6)
$\dfrac{7 + 1.2}{.\overline{9}\%}$
Steve Wilson, 6/22
Lawrence, KS
  821 (2.4)
$\dfrac{92}{.\overline{1}} - 7$
Steve Wilson, 6/22
Lawrence, KS
822 (4.0)
$\dfrac{7!}{(\sqrt{9})!} - \dfrac{2}{.\overline{1}}$
Steve Wilson, 12/24
Lawrence, KS
823 (3.0)
$\dfrac{.9\overline{2}}{.\overline{1}\%} - 7$
Steve Wilson, 4/23
Lawrence, KS
824 (2.8)
$\dfrac{.9}{.\overline{1}\%} + 7 \times 2$
Steve Wilson, 6/22
Lawrence, KS
825 (4.0)
$\dfrac{7 - (\sqrt{9})!}{.\overline{12}\%}$
Steve Wilson, 12/24
Lawrence, KS
826 (4.0)
$(.\overline{1}\%)^{-2}\pm + 9 + 7$
Steve Wilson, 4/23
Lawrence, KS
827 (4.8)
$(9 - .7) \times \antilog 2 + \log(1\pm)$
Steve Wilson, 12/24
Lawrence, KS
828 (2.2)
$\dfrac{9}{1\%} - 72$
Jonathan Frank, 2/22
Rye, NY
829 (4.2)
$9 \times \antilog 2 - 71$
Steve Wilson, 12/24
Lawrence, KS
830 (2.4)
$\dfrac{2 + 9 \times .7}{1\%}$
Steve Wilson, 6/22
Lawrence, KS
  831 (3.4)
$7 \times \left( \dfrac{1}{.2} \right)! - 9$
Steve Wilson, 4/23
Lawrence, KS
832 (2.4)
$\dfrac{9 - .7}{1\%} + 2$
Steve Wilson, 6/22
Lawrence, KS
833 (3.8)
$7 \times \left(\left( \dfrac{1}{.2} \right)! - .\overline{9}\right)$
Steve Wilson, 12/24
Lawrence, KS
834 (3.8)
$7 \times \left( \dfrac{1}{.2} \right)! - (\sqrt{9})!$
Steve Wilson, 4/23
Lawrence, KS
835 (2.4)
$\dfrac{92}{.\overline{1}} + 7$
Steve Wilson, 6/22
Lawrence, KS
836 (4.4)
$9 \times (\antilog 2 - 7.\overline{1})$
Steve Wilson, 12/24
Lawrence, KS
837 (2.8)
$\dfrac{.9}{.\overline{1}\%} + 27$
Steve Wilson, 6/22
Lawrence, KS
838 (3.6)
$\dfrac{7!}{(\sqrt{9})!} - 2 \times 1$
Steve Wilson, 4/23
Lawrence, KS
839 (3.4)
$\dfrac{7!}{(\sqrt[2]{9})!} - 1$
Steve Wilson, 4/23
Lawrence, KS
840 (2.6)
$\dfrac{7 \times 1.2}{.\overline{9}\%}$
Steve Wilson, 6/22
Lawrence, KS
  841 (2.2)
$\dfrac{17}{2\%} - 9$
Jonathan Frank, 4/22
Rye, NY
842 (3.6)
$\dfrac{7!}{(\sqrt{9})!} + 2 \times 1$
Steve Wilson, 4/23
Lawrence, KS
843 (3.4)
$\dfrac{1}{2\pmf} + 7^{\sqrt{9}}$
Steve Wilson, 6/22
Lawrence, KS
844 (3.6)
$\dfrac{17}{2\%} - (\sqrt{9})!$
Jonathan Frank, 2/22
Rye, NY
845 (3.0)
$\dfrac{.9}{.\overline{1}\%} + \dfrac{7}{.2}$
Steve Wilson, 6/22
Lawrence, KS
846 (3.8)
$7 \times \left( \dfrac{1}{.2} \right)! + (\sqrt{9})!$
Steve Wilson, 4/23
Lawrence, KS
847 (3.4)
$\dfrac{17}{2\%} - \sqrt{9}$
Jonathan Frank, 8/21
Rye, NY
848 (2.6)
$\dfrac{1.9}{.\overline{2}\%} - 7$
Steve Wilson, 6/22
Lawrence, KS
849 (2.6)
$\dfrac{17}{2\%} - .\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
850 (2.2)
$\dfrac{9 + 7 + 1}{2\%}$
Steve Wilson, 6/22
Lawrence, KS
  851 (2.6)
$\dfrac{17}{2\%} + .\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
852 (3.6)
$\dfrac{7!}{(\sqrt{9})!} + 12$
Steve Wilson, 4/23
Lawrence, KS
853 (3.4)
$\dfrac{17}{2\%} + \sqrt{9}$
Jonathan Frank, 5/22
Rye, NY
854 (3.6)
$7 \times \left( ((\sqrt{9})! - 1)! + 2\right)$
Steve Wilson, 12/24
Lawrence, KS
855 (2.4)
$\dfrac{97 - 2}{.\overline{1}}$
Steve Wilson, 6/22
Lawrence, KS
856 (3.6)
$\dfrac{17}{2\%} + (\sqrt{9})!$
Jonathan Frank, 5/22
Rye, NY
857 (3.6)
$\sqrt[ \sqrt{.\overline{1}}]{9} + 2^7$
Steve Wilson, 6/22
Lawrence, KS
858 (4.4)
$\sqrt{(.\overline{1}\%)^{-2}} - 7 \times (\sqrt{9})!$
Steve Wilson, 12/24
Lawrence, KS
859 (2.2)
$\dfrac{17}{2\%} + 9$
Jonathan Frank, 5/22
Rye, NY
860 (3.8)
$\dfrac{7!}{(\sqrt{9})!} + \dfrac{2}{.1}$
Steve Wilson, 4/23
Lawrence, KS
  861 (3.6)
$\dfrac{7!}{(\sqrt{9})!} + 21$
Steve Wilson, 4/23
Lawrence, KS
862 (2.6)
$\dfrac{1.9}{.\overline{2}\%} + 7$
Steve Wilson, 6/22
Lawrence, KS
863 (4.0)
$((\sqrt{9})!)! \times (7 - 2)!\% - 1$
Steve Wilson, 12/24
Lawrence, KS
864 (3.6)
$7.2 \times ((\sqrt{9})! - 1)!$
Steve Wilson, 12/24
Lawrence, KS
865 (2.4)
$\dfrac{9}{1\%} - \dfrac{7}{.2}$
Steve Wilson, 6/22
Lawrence, KS
866 (2.4)
$\dfrac{7}{(1 - .2)\%} - 9$
Steve Wilson, 6/22
Lawrence, KS
867 (3.2)
$17^2 \times \sqrt{9}$
Hannah Maleki, 11/16
Overland Park, KS
  869 (3.8)
$\dfrac{7}{(1 - .2)\%} - (\sqrt{9})!$
Steve Wilson, 6/22
Lawrence, KS
870 (3.6)
$\dfrac{2^{\sqrt{9}} + .7}{1\%}$
Steve Wilson, 6/22
Lawrence, KS
  871 (2.4)
$\dfrac{97}{.\overline{1}} - 2$
Steve Wilson, 6/22
Lawrence, KS
872 (3.6)
$\dfrac{7}{(1 - .2)\%} - \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
873 (2.2)
$\dfrac{9}{1\%} - 27$
Jonathan Frank, 5/22
Rye, NY
874 (2.8)
$\dfrac{7}{(1 - .2)\%} - .\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
875 (2.4)
$\dfrac{97}{.\overline{1}} + 2$
Steve Wilson, 6/22
Lawrence, KS
876 (2.8)
$\dfrac{7}{(1 - .2)\%} + .\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
877 (2.6)
$\dfrac{.7}{(9 - 1)\%\%} + 2$
Steve Wilson, 6/22
Lawrence, KS
878 (3.6)
$\dfrac{7}{(1 - .2)\%} + \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
879 (4.2)
$\sqrt{(.\overline{1}\%)^{-2}} - 7 \times \sqrt{9}$
Steve Wilson, 12/24
Lawrence, KS
880 (2.4)
$\dfrac{7 + 9 \times .2}{1\%}$
Steve Wilson, 6/22
Lawrence, KS
  881 (3.8)
$\dfrac{7}{(1 - .2)\%} + (\sqrt{9})!$
Steve Wilson, 6/22
Lawrence, KS
882 (2.8)
$\dfrac{.9}{.\overline{1}\%} + 72$
Steve Wilson, 6/22
Lawrence, KS
883 (4.2)
$9 \times \antilog 2 - 17$
Steve Wilson, 12/24
Lawrence, KS
884 (2.4)
$\dfrac{7}{(1 - .2)\%} + 9$
Steve Wilson, 6/22
Lawrence, KS
885 (4.6)
$\dfrac{7}{(2^{\sqrt{9}})\pmf} + \antilog 1$
Steve Wilson, 12/24
Lawrence, KS
886 (2.2)
$\dfrac{9}{1\%} - 7 \times 2$
Jonathan Frank, 3/22
Rye, NY
887 (2.4)
$\dfrac{9 - .2}{1\%} + 7$
Steve Wilson, 6/22
Lawrence, KS
888 (4.6)
$9\%\pm \times \antilog 7 - 12$
Steve Wilson, 12/24
Lawrence, KS
889 (4.0)
$(.\overline{1}\%)^{-2}\pm + 79$
Steve Wilson, 6/22
Lawrence, KS
890 (2.8)
$\dfrac{1.9\overline{7}}{.\overline{2}\%}$
Steve Wilson, 6/22
Lawrence, KS
  891 (2.2)
$\dfrac{9}{1\%} - 7 - 2$
Jonathan Frank, 3/22
Rye, NY
892 (4.2)
$9 \times \antilog 2 - 7 - 1$
Steve Wilson, 12/24
Lawrence, KS
893 (2.2)
$\dfrac{9}{(2 - 1)\%} - 7$
Steve Wilson, 6/22
Lawrence, KS
894 (3.6)
$\dfrac{9}{1\%} - (\sqrt{7 + 2})!$
Steve Wilson, 6/22
Lawrence, KS
895 (2.2)
$\dfrac{179}{.2}$
Jonathan Frank, 3/22
Rye, NY
896 (4.2)
$\sqrt{(.\overline{1}\%)^{-2}} - 7 + \sqrt{9}$
Steve Wilson, 12/24
Lawrence, KS
897 (3.4)
$\dfrac{9}{1\%} - \sqrt{7 + 2}$
Jonathan Frank, 5/22
Rye, NY
898 (3.2)
$\dfrac{9}{1^7 \%} - 2$
Steve Wilson, 6/22
Lawrence, KS
899 (2.6)
$\dfrac{7 + 2}{1\%} - .\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
900 (2.2)
$\dfrac{2}{\left(1 - \dfrac79 \right)\%}$
Steve Wilson, 6/22
Lawrence, KS
  901 (2.6)
$\dfrac{7 + 2}{1\%} + .\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
902 (3.2)
$\dfrac{9}{1^7 \%} + 2$
Steve Wilson, 6/22
Lawrence, KS
903 (2.0)
$129 \times 7$
Bing Guo, 11/13
Lawrence, KS
904 (4.2)
$\sqrt{(.\overline{1}\%)^{-2}} + 7 - \sqrt{9}$
Steve Wilson, 12/24
Lawrence, KS
905 (2.0)
$912 - 7$
Emily Boudville, 6/13
Perth, Western Australia
906 (3.6)
$\dfrac{7 + 2}{1\%} + (\sqrt{9})!$
Steve Wilson, 6/22
Lawrence, KS
907 (2.2)
$\dfrac{9}{(2 - 1)\%} + 7$
Steve Wilson, 6/22
Lawrence, KS
908 (3.8)
$(.1)^{-7} \%\% - 92$
Steve Wilson, 6/22
Lawrence, KS
909 (2.2)
$\dfrac{9}{1\%} + 7 + 2$
Jonathan Frank, 4/22
Rye, NY
910 (2.6)
$\dfrac{7 + 2.1}{.\overline{9}\%}$
Steve Wilson, 6/22
Lawrence, KS
      913 (2.2)
$\dfrac{9.2}{1\%} - 7$
Steve Wilson, 6/22
Lawrence, KS
914 (2.0)
$921 - 7$
Bing Guo, 10/13
Lawrence, KS
915 (2.0)
$917 - 2$
Steve Wilson, 6/22
Lawrence, KS
916 (4.0)
$\sqrt{(.\overline{1}\%)^{-2}} + 9 + 7$
Steve Wilson, 12/24
Lawrence, KS
917 (3.4)
$7! \times .2 - 91$
Steve Wilson, 6/22
Lawrence, KS
918 (3.6)
$7! \times .2 - \dfrac{9}{.1}$
Steve Wilson, 6/22
Lawrence, KS
919 (2.0)
$912 + 7$
Steve Wilson, 8/13
Lawrence, KS
920 (3.2)
$\dfrac{9.2}{1^7 \%}$
Steve Wilson, 6/22
Lawrence, KS
  921 (3.6)
$\sqrt{ (1\pm) ^{-2} \phantom8} - 79$
Steve Wilson, 6/22
Lawrence, KS
  923 (2.8)
$\dfrac{9.\overline{2}}{1\%} + .\overline{7}$
Steve Wilson, 6/22
Lawrence, KS
  925 (4.0)
$\dfrac{((\sqrt{9})!)! + 1}{.\overline{7}} - 2$
Steve Wilson, 4/23
Lawrence, KS
926 (2.0)
$927 - 1$
Giuseppe Favacchio, 4/13
Scicli, Italy
927 (2.0)
$927 \times 1$
Sophie Fischer & Violet McCabe, 4/13
New York, NY
928 (2.0)
$927 + 1$
Giuseppe Favacchio, 4/13
Scicli, Italy
929 (4.0)
$\dfrac{((\sqrt{9})!)! + 1}{.\overline{7}} + 2$
Steve Wilson, 4/23
Lawrence, KS
930 (3.0)
$\dfrac{2 - .\overline{9} - 7\%}{.1\%}$
Steve Wilson, 12/24
Lawrence, KS
  931 (3.0)
$7^2 \times 19$
Hyun Cheong, 2/14
Overland Park, KS
932 (3.0)
$\dfrac{.\overline{9} - 7\%}{.1\%} + 2$
Steve Wilson, 12/24
Lawrence, KS
    935 (2.4)
$\dfrac{9 + \dfrac{.7}{2}}{1\%}$
Steve Wilson, 6/22
Lawrence, KS
  937 (3.6)
$\sqrt{ (1 \pm)^{-2} \phantom8} - 9 \times 7$
Steve Wilson, 6/22
Lawrence, KS
938 (3.8)
$\dfrac{.9}{.\overline{1}\%} + 2^7$
Steve Wilson, 6/22
Lawrence, KS
   
      943 (2.2)
$\dfrac{19}{2\%} - 7$
Jonathan Frank, 6/22
Rye, NY
  945 (2.6)
$\dfrac{9.1 - 7}{.\overline{2}\%}$
Steve Wilson, 6/22
Lawrence, KS
    948 (2.0)
$79 \times 12$
Allison Layne-Mulhern, 10/13
Leawood, KS
949 (3.2)
$\dfrac{9}{1\%} + 7^2$
Jonathan Frank, 10/21
Rye, NY
950 (2.2)
$\dfrac{97 - 2}{.1}$
Steve Wilson, 6/22
Lawrence, KS
  951 (3.6)
$\dfrac{.\overline{9}}{1\pmf} - 7^2$
Steve Wilson, 6/22
Lawrence, KS
952 (3.6)
$\sqrt[.1]{2} - \dfrac{9!}{7!}$
Steve Wilson, 12/24
Lawrence, KS
        957 (2.2)
$\dfrac{19}{2\%} + 7$
Jonathan Frank, 6/22
Rye, NY
    960 (3.2)
$(7 - 2)! \times (9 - 1)$
Steve Wilson, 12/24
Lawrence, KS
  961 (3.2)
$\sqrt[.1]{2} - 7 \times 9$
Steve Wilson, 6/22
Lawrence, KS
  963 (3.4)
$\left( (.1)^{-2} + 7 \right) \times 9$
Steve Wilson, 6/22
Lawrence, KS
  965 (2.8)
$\dfrac{1.\overline{9} - 7\%}{.2\%}$
Steve Wilson, 6/22
Lawrence, KS
    968 (2.2)
$\dfrac{97}{.1} - 2$
Margaret Wilson, 4/13
Atlanta, GA
969 (2.0)
$971 - 2$
D.J. Demjanik, 12/13
Shawnee, KS
970 (2.2)
$\dfrac{9.7}{(2 - 1)\%}$
Steve Wilson, 6/22
Lawrence, KS
  971 (2.0)
$972 - 1$
Edie Abraham-Macht, 4/13
Brooklyn, NY
972 (2.0)
$\dfrac{972}{1}$
Edie Abraham-Macht, 4/13
Brooklyn, NY
973 (2.0)
$972 + 1$
Giuseppe Favacchio, 4/13
Scicli, Italy
        978 (2.8)
$\dfrac{9.\overline{7}}{1\%} + .\overline{2}$
Steve Wilson, 6/22
Lawrence, KS
979 (3.8)
$\sqrt{ (1\pm)^{-2} \phantom8} - 7 \times \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
980 (3.8)
$\dfrac{.\overline{9} - 2\%}{1^7 \pmf}$
Steve Wilson, 4/23
Lawrence, KS
    982 (3.6)
$\sqrt[.1]{2} - 7 \times (\sqrt{9})!$
Steve Wilson, 12/24
Lawrence, KS
983 (2.8)
$\dfrac{2 - .9}{.\overline{1}\%} - 7$
Steve Wilson, 6/22
Lawrence, KS
984 (3.6)
$\sqrt{ (1\pm)^{-2} \phantom8} - 7 - 9$
Steve Wilson, 6/22
Lawrence, KS
985 (2.2)
$\dfrac{197}{.2}$
Jonathan Frank, 6/22
Rye, NY
986 (2.8)
$\dfrac{.\overline{9}}{.1\%} - 2 \times 7$
Steve Wilson, 6/22
Lawrence, KS
987 (3.0)
$\dfrac{.\overline{9} - 2\%}{.1\%} + 7$
Steve Wilson, 4/23
Lawrence, KS
  989 (3.4)
$7! \times .2 - 19$
Steve Wilson, 6/22
Lawrence, KS
990 (2.2)
$\dfrac{7.9 + 2}{1\%}$
Steve Wilson, 6/22
Lawrence, KS
  991 (2.8)
$\dfrac{.\overline{9}}{.1\%} - 7 - 2$
Steve Wilson, 6/22
Lawrence, KS
992 (3.8)
$\sqrt{ (1\pm)^{-2} \phantom8} - 7.\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
993 (2.6)
$\dfrac{1.\overline{9}}{.2\%} - 7$
Steve Wilson, 6/22
Lawrence, KS
994 (4.0)
$\sqrt{ (1\pm)^{-2} \phantom8} - 7 + .\overline{9}$
Steve Wilson, 6/22
Lawrence, KS
995 (2.6)
$\dfrac{9 - 7 - 1\%}{.2\%}$
Steve Wilson, 6/22
Lawrence, KS
996 (3.8)
$\sqrt{ (1\pm)^{-2} \phantom8} - 7 + \sqrt{9}$
Steve Wilson, 6/22
Lawrence, KS
997 (2.8)
$\dfrac{2 - .9}{.\overline{1}\%} + 7$
Steve Wilson, 6/22
Lawrence, KS
998 (3.4)
$7! \times .2 - 9 - 1$
Steve Wilson, 6/22
Lawrence, KS
999 (2.4)
$\dfrac{7 + 2}{.9\%} - 1$
Steve Wilson, 6/22
Lawrence, KS
1000 (2.4)
$\dfrac{7 + 2 \times 1}{.9\%}$
Steve Wilson, 6/22
Lawrence, KS
  1001 (2.4)
$\dfrac{7 + 2}{.9\%} + 1$
Steve Wilson, 12/24
Lawrence, KS
1002 (3.6)
$\dfrac{7 - (\sqrt{9})!}{1\pmf} + 2$
Steve Wilson, 12/24
Lawrence, KS
1003 (3.4)
$\sqrt[.1]{2} - 7 \times \sqrt{9}$
Steve Wilson, 12/24
Lawrence, KS
1004 (3.6)
$7! \times .2 - \sqrt{9} - 1$
Steve Wilson, 12/24
Lawrence, KS
1005 (2.6)
$\dfrac{9 - 7 + 1\%}{.2\%}$
Steve Wilson, 12/24
Lawrence, KS
1006 (3.4)
$(7! - 9 - 1) \times .2$
Steve Wilson, 12/24
Lawrence, KS
1007 (2.6)
$\dfrac{1.\overline{9}}{.2\%} + 7$
Steve Wilson, 12/24
Lawrence, KS
1008 (3.2)
$\sqrt[.1]{2} - 9 - 7$
Steve Wilson, 12/24
Lawrence, KS
1009 (2.8)
$\dfrac{.\overline{9}}{.1\%} + 7 + 2$
Steve Wilson, 12/24
Lawrence, KS
1010 (3.4)
$(7! + 9 + 1) \times .2$
Steve Wilson, 12/24
Lawrence, KS
  1011 (3.6)
$\sqrt[.1]{2} - 7 - (\sqrt{9})!$
Steve Wilson, 12/24
Lawrence, KS
1012 (3.6)
$7! \times .2 + \sqrt{9} + 1$
Steve Wilson, 12/24
Lawrence, KS
1013 (3.8)
$7! \times .2 + (\sqrt{9})! - 1$
Steve Wilson, 12/24
Lawrence, KS
1014 (2.8)
$\dfrac{.\overline{9}}{.1\%} + 7 \times 2$
Steve Wilson, 12/24
Lawrence, KS
1015 (3.8)
$7! \times .2 + (\sqrt{9})! + 1$
Steve Wilson, 12/24
Lawrence, KS
1016 (3.4)
$\sqrt[.1]{2} - 7.\overline{9}$
Steve Wilson, 12/24
Lawrence, KS
1017 (3.0)
$2^{9 + 1} - 7$
Steve Wilson, 12/24
Lawrence, KS
1018 (3.4)
$7! \times .2 + 9 + 1$
Steve Wilson, 12/24
Lawrence, KS
  1020 (3.4)
$\sqrt[.1]{2} - \sqrt{9 + 7}$
Steve Wilson, 12/24
Lawrence, KS
    1022 (3.2)
$\sqrt[.1]{2} - 9 + 7$
Steve Wilson, 12/24
Lawrence, KS
1023 (3.6)
$\sqrt[.1]{2} - (.\overline{9})^7$
Steve Wilson, 12/24
Lawrence, KS
1024 (3.0)
$2^7 \times (9 - 1)$
Gregory Bayer, 3/20
Sydney, NSW
1025 (3.6)
$\sqrt[.1]{2} + (.\overline{9})^7$
Steve Wilson, 12/24
Lawrence, KS
1026 (2.8)
$\dfrac{9 - 1 - 2\%}{.\overline{7}\%}$
Steve Wilson, 12/24
Lawrence, KS
1027 (2.8)
$\dfrac{.\overline{9}}{.1\%} + 27$
Steve Wilson, 12/24
Lawrence, KS
1028 (3.4)
$\sqrt[.1]{2} + \sqrt{9 + 7}$
Steve Wilson, 12/24
Lawrence, KS
1029 (3.2)
$7^{2+1} \times \sqrt{9}$
Gregory Bayer, 3/20
Sydney, NSW
1030 (2.4)
$\dfrac{9 + 2 - .7}{1\%}$
Steve Wilson, 12/24
Lawrence, KS
  1031 (3.0)
$2^{9 + 1} + 7$
Steve Wilson, 12/24
Lawrence, KS
1032 (3.4)
$\sqrt[.1]{2} + 7.\overline{9}$
Steve Wilson, 12/24
Lawrence, KS
    1035 (2.8)
$\dfrac{1.\overline{9} + 7\%}{.2\%}$
Steve Wilson, 12/24
Lawrence, KS
  1037 (3.6)
$\sqrt[.1]{2} + 7 + (\sqrt{9})!$
Steve Wilson, 12/24
Lawrence, KS
    1040 (2.4)
$\dfrac{9 + 7 \times .2}{1\%}$
Steve Wilson, 12/24
Lawrence, KS
          1045 (3.4)
$\sqrt[.1]{2} + 7 \times \sqrt{9}$
Steve Wilson, 12/24
Lawrence, KS
      1049 (3.6)
$\dfrac{.\overline{9}}{1\pmf} + 7^2$
Steve Wilson, 12/24
Lawrence, KS
1050 (2.2)
$\dfrac{21}{(9 - 7)\%}$
Steve Wilson, 12/24
Lawrence, KS
      1053 (2.8)
$\dfrac{2 + 7\%\%}{19\%\%}$
Steve Wilson, 12/24
Lawrence, KS
             
      1063 (3.6)
$\sqrt{(1\pm)^{-2} \phantom8} + 9 \times 7$
Steve Wilson, 12/24
Lawrence, KS
    1066 (3.6)
$\sqrt[.1]{2} + 7 \times (\sqrt{9})!$
Steve Wilson, 12/24
Lawrence, KS
  1068 (3.4)
$(7 - 2)! \times (9 - .1)$
Steve Wilson, 12/24
Lawrence, KS
   
  1071 (3.2)
$((7 - 2)! - 1) \times 9$
Steve Wilson, 12/24
Lawrence, KS
1072 (2.8)
$\dfrac{.\overline{9}}{.1\%} + 72$
Steve Wilson, 12/24
Lawrence, KS
1073 (3.4)
$\left(\dfrac{1}{.2}\right)! \times 9 - 7$
Steve Wilson, 12/24
Lawrence, KS
      1077 (3.8)
$\dfrac{(7 - 2)!}{.\overline{1}} - \sqrt{9}$
Steve Wilson, 12/24
Lawrence, KS
  1079 (3.2)
$(7 - 2)! \times 9 - 1$
Gregory Bayer, 11/19
Sydney, NSW
1080 (3.4)
$(7 - 1)! \times \dfrac{ \sqrt{9}}{2}$
Gregory Bayer, 3/20
Sydney, New South Wales
  1081 (3.2)
$(7 - 2)! \times 9 + 1$
Jonathan Frank, 5/21
Rye, NY
  1083 (3.8)
$\dfrac{(7 - 2)!}{.\overline{1}} + \sqrt{9}$
Steve Wilson, 12/24
Lawrence, KS
      1087 (3.2)
$\sqrt[.1]{2} + 9 \times 7$
Steve Wilson, 12/24
Lawrence, KS
  1089 (2.8)
$\dfrac{2 - .79}{.\overline{1}\%}$
Steve Wilson, 12/24
Lawrence, KS
 
    1092 (3.2)
$(7 - 2)! \times 9.1$
Steve Wilson, 12/24
Lawrence, KS
1093 (2.2)
$\dfrac{9 + 2}{1\%} - 7$
Steve Wilson, 12/24
Lawrence, KS
    1096 (3.6)
$\sqrt[.1]{2} + \dfrac{9!}{7!}$
Steve Wilson, 12/24
Lawrence, KS
1097 (3.6)
$\sqrt{(1\pm)^{-2} \phantom8} + 97$
Steve Wilson, 12/24
Lawrence, KS
    1100 (2.2)
$\dfrac{9 \times 2 - 7}{1\%}$
Steve Wilson, 12/24
Lawrence, KS
  1101 (3.6)
$7! \times .\overline{2} - 19$
Steve Wilson, 12/24
Lawrence, KS
  1103 (3.2)
$\sqrt[.1]{2} + 79$
Steve Wilson, 12/24
Lawrence, KS
  1105 (2.8)
$\dfrac{7 + \dfrac{.9}{.\overline{2}}}{1\%}$
Steve Wilson, 12/24
Lawrence, KS
  1107 (2.2)
$\dfrac{9 + 2}{1\%} + 7$
Steve Wilson, 12/24
Lawrence, KS
    1110 (3.2)
$\dfrac{.\overline{9} - .1\%}{(7 + 2)\%\%}$
Steve Wilson, 12/24
Lawrence, KS
  1111 (3.2)
$\dfrac{.\overline{9} - 1\%\%}{(7 + 2)\%\%}$
Steve Wilson, 12/24
Lawrence, KS
1112 (3.6)
$7! \times .\overline{2} - 9 + 1$
Steve Wilson, 12/24
Lawrence, KS
    1115 (2.8)
$\dfrac{1 + \dfrac{7\%\%}{2}}{9\%\%}$
Steve Wilson, 12/24
Lawrence, KS
1116 (2.6)
$\dfrac{2}{.1\overline{7}\%} - 9$
Steve Wilson, 12/24
Lawrence, KS
1117 (3.8)
$7! \times .\overline{2} - 1 \times \sqrt{9}$
Steve Wilson, 12/24
Lawrence, KS
1118 (2.4)
$\dfrac{9}{(1 - .2)\%} - 7$
Steve Wilson, 12/24
Lawrence, KS
1119 (3.2)
$7! \times \dfrac29 - 1$
Ashlyn Howatson, 4/13
Perth, Western Australia
1120 (3.2)
$7! \times \dfrac29 \times 1$
Parker Thomsen, 5/15
Lenexa, KS
  1121 (3.2)
$7! \times \dfrac29 + 1$
Parker Thomsen, 5/15
Lenexa, KS
1122 (3.8)
$\dfrac{2}{.1\overline{7}\%} - \sqrt{9}$
Steve Wilson, 12/24
Lawrence, KS
1123 (2.6)
$\dfrac{.9}{(7 + 1)\%\%} - 2$
Steve Wilson, 12/24
Lawrence, KS
1124 (3.0)
$\dfrac{2}{.1\overline{7}\%} - .\overline{9}$
Steve Wilson, 12/24
Lawrence, KS
1125 (2.6)
$\dfrac{.2}{\left(1 + \dfrac79\right)\%\%}$
Steve Wilson, 12/24
Lawrence, KS
1126 (3.0)
$\dfrac{2}{.1\overline{7}\%} + .\overline{9}$
Steve Wilson, 12/24
Lawrence, KS
1127 (2.6)
$\dfrac{.9}{(7 + 1)\%\%} + 2$
Steve Wilson, 12/24
Lawrence, KS
1128 (3.6)
$\dfrac{.\overline{9}}{1\pmf} + 2^7$
Steve Wilson, 12/24
Lawrence, KS
1129 (3.6)
$7! \times .\overline{2} + 9 \times 1$
Steve Wilson, 12/24
Lawrence, KS
1130 (2.8)
$\dfrac{12 - .7}{.\overline{9}\%}$
Steve Wilson, 12/24
Lawrence, KS
    1132 (2.4)
$\dfrac{9}{(1 - .2)\%} + 7$
Steve Wilson, 12/24
Lawrence, KS
  1134 (2.4)
$\dfrac{9 \times 7 \times 2}{.\overline{1}}$
Steve Wilson, 12/24
Lawrence, KS
        1139 (3.6)
$7! \times .\overline{2} + 19$
Steve Wilson, 12/24
Lawrence, KS
1140 (2.6)
$\dfrac{9 - 1 - 2\%}{.7\%}$
Steve Wilson, 12/24
Lawrence, KS
      1143 (2.0)
$127 \times 9$
Bing Guo, 11/13
Lawrence, KS
            1150 (2.2)
$\dfrac{7 + \dfrac92}{1\%}$
Steve Wilson, 12/24
Lawrence, KS
  1151 (3.0)
$2^7 \times 9 - 1$
Sierra Henricks, 4/14
Olathe, KS
1152 (3.0)
$2^7 \times 9^1$
Hannah Maleki, 9/16
Overland Park, KS
1153 (3.0)
$2^7 \times 9 + 1$
Iris Behm, 1/14
Lenexa, KS
            1160 (2.6)
$\dfrac{\dfrac{9}{.\overline{1}} + .2}{7\%}$
Steve Wilson, 12/24
Lawrence, KS
  1161 (2.8)
$\dfrac{9 + (2 + 1)\%}{.\overline{7}\%}$
Steve Wilson, 12/24
Lawrence, KS
    1164 (2.0)
$97 \times 12$
Allison Layne-Mulhern, 11/13
Leawood, KS
      1168 (2.6)
$\dfrac{9.1}{.\overline{7}\%} - 2$
Steve Wilson, 12/24
Lawrence, KS
  1170 (2.2)
$\dfrac{9 + 2.7}{1\%}$
Steve Wilson, 12/24
Lawrence, KS
    1172 (2.6)
$\dfrac{9.1}{.\overline{7}\%} + 2$
Steve Wilson, 12/24
Lawrence, KS
      1176 (3.4)
$( \sqrt{9} + 1)! \times 7^2$
Gregory Bayer, 3/20
Sydney, NSW
1177 (2.8)
$\dfrac{2 + 9\%\%}{17\%\%}$
Steve Wilson, 12/24
Lawrence, KS
  1179 (2.8)
$\dfrac{2 - .7}{.\overline{1}\%} + 9$
Steve Wilson, 12/24
Lawrence, KS
 
  1191 (3.4)
$\dfrac{(7 - 2)!}{.1} - 9$
Steve Wilson, 12/24
Lawrence, KS
  1193 (2.6)
$\dfrac{12}{.\overline{9}\%} - 7$
Steve Wilson, 12/24
Lawrence, KS
1194 (3.8)
$\dfrac{(7 - 2)!}{.1} - (\sqrt{9})!$
Steve Wilson, 12/24
Lawrence, KS
    1197 (2.8)
$7 \times \left(\dfrac{.2}{.\overline{1}\%} - 9 \right)$
Steve Wilson, 12/24
Lawrence, KS
  1199 (3.6)
$\dfrac{72}{(\sqrt{9})!\%} - 1$
Jonathan Frank, 6/22
Rye, NY
1200 (2.6)
$(7 - .\overline{9}) \times \dfrac{2}{1\%}$
Steve Wilson, 12/24
Lawrence, KS

Page 1 (1-400), Page 2 (401-800), Page 3 (801-1200), Page 4 (1201-4000), Page 11 (4001+).